Suppr超能文献

利用机器学习设计卓越的气体分离聚合物膜。

Designing exceptional gas-separation polymer membranes using machine learning.

作者信息

Barnett J Wesley, Bilchak Connor R, Wang Yiwen, Benicewicz Brian C, Murdock Laura A, Bereau Tristan, Kumar Sanat K

机构信息

Department of Chemical Engineering, Columbia University, New York, NY, USA.

Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA.

出版信息

Sci Adv. 2020 May 15;6(20):eaaz4301. doi: 10.1126/sciadv.aaz4301. eCollection 2020 May.

Abstract

The field of polymer membrane design is primarily based on empirical observation, which limits discovery of new materials optimized for separating a given gas pair. Instead of relying on exhaustive experimental investigations, we trained a machine learning (ML) algorithm, using a topological, path-based hash of the polymer repeating unit. We used a limited set of experimental gas permeability data for six different gases in ~700 polymeric constructs that have been measured to date to predict the gas-separation behavior of over 11,000 homopolymers not previously tested for these properties. To test the algorithm's accuracy, we synthesized two of the most promising polymer membranes predicted by this approach and found that they exceeded the upper bound for CO/CH separation performance. This ML technique, which is trained using a relatively small body of experimental data (and no simulation data), evidently represents an innovative means of exploring the vast phase space available for polymer membrane design.

摘要

聚合物膜设计领域主要基于经验观察,这限制了对针对特定气体对分离进行优化的新材料的发现。我们没有依赖详尽的实验研究,而是使用聚合物重复单元的基于拓扑路径的哈希值训练了一种机器学习(ML)算法。我们使用了迄今为止在约700种聚合物结构中测量的六种不同气体的有限实验气体渗透率数据集,来预测超过11000种此前未测试过这些性能的均聚物的气体分离行为。为了测试该算法的准确性,我们合成了通过这种方法预测的两种最有前景的聚合物膜,发现它们超过了CO/CH分离性能的上限。这种使用相对少量实验数据(且无模拟数据)进行训练的ML技术,显然代表了一种探索聚合物膜设计可用的巨大相空间的创新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe53/7228755/2ccf71d36e1d/aaz4301-F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验