Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK.
Centre for Trophoblast Research (CTR), University of Cambridge, Cambridge CB2 3EG, UK.
Hum Reprod Update. 2020 Jun 18;26(4):501-513. doi: 10.1093/humupd/dmaa017.
In humans, inadequate trophoblast invasion into the decidua is associated with the 'great obstetrical syndromes' which include pre-eclampsia, foetal growth restriction (FGR) and stillbirth. The mechanisms regulating invasion remain poorly understood, although interactions with the uterine environment are clearly of central importance. Extravillous trophoblast (EVT) cells invade the uterus and transform the spiral arteries. Progress in understanding how they invade has been limited due to the lack of good in vitro models. Firstly, there are no non-malignant cell lines that have an EVT phenotype. Secondly, the invasion assays used are of limited use for the small numbers of primary EVT available from first-trimester placentas. We discuss recent progress in this field with the generation of new EVT lines and invasion assays using microfluidic technology.
Our aim is to describe the established models used to study human trophoblast invasion in vivo and in vitro. The difficulties of obtaining primary cells and cell lines that recapitulate the phenotype of EVT are discussed together with the advantages and pitfalls of the different invasion assays. We compare these traditional end point assays to microfluidic assays where the dynamics of migration can be measured.
Relevant studies were identified by PubMed search, last updated on February 2020. A search was conducted to determine the number of journal articles published using the cell lines JEG-3, BeWo, JAR, HTR-8/Svneo, Swan-71 and primary human extravillous trophoblast in the last 5 years.
Deep trophoblast invasion into the maternal decidua is a particular feature of human pregnancy. This invasion needs to be finely regulated to allocate resources between mother and baby. A reliable source of EVT is needed to study in vitro how the uterine environment regulates this process. First, we critically discuss the issues with the trophoblast cell lines currently used; for example, most of them lack expression of the defining marker of EVT, HLA-G. Recently, advances in human stem cell and organoid technology have been applied to extraembryonic tissues to develop trophoblast cell lines that can grow in two (2D) and three dimensions (3D) and differentiate to EVT. This means that the 'trophoblast' cell lines currently in use should rapidly become obsolete. Second, we critically discuss the problems with assays to study trophoblast invasion. These lack physiological relevance and have simplified migration dynamics. Microfluidic assays are a powerful tool to study cell invasion because they require only a few cells, which are embedded in 3D in an extracellular matrix. Their major advantage is real-time monitoring of cell movement, enabling detailed analysis of the dynamics of trophoblast migration.
Trophoblast invasion in the first trimester of pregnancy remains poorly understood despite the importance of this process in the pathogenesis of pre-eclampsia, FGR, stillbirth and recurrent miscarriage. The new technologies described here will allow investigation into this critical process.
在人类中,滋养细胞侵入蜕膜不足与“产科大问题”有关,这些问题包括子痫前期、胎儿生长受限(FGR)和死胎。尽管与子宫环境的相互作用显然具有重要意义,但调节侵袭的机制仍知之甚少。绒毛外滋养层(EVT)细胞侵入子宫并转化螺旋动脉。由于缺乏良好的体外模型,对它们如何侵袭的理解进展有限。首先,没有具有 EVT 表型的非恶性细胞系。其次,用于研究的侵袭测定对于从第一孕期胎盘获得的少量原发性 EVT 用途有限。我们讨论了该领域的最新进展,包括使用微流控技术生成新的 EVT 系和侵袭测定。
我们的目的是描述用于研究体内和体外人类滋养细胞侵袭的既定模型。讨论了获得能够重现 EVT 表型的原代细胞和细胞系的困难,以及不同侵袭测定的优缺点。我们将这些传统终点测定与可以测量迁移动力学的微流控测定进行了比较。
通过 PubMed 搜索确定了相关研究,最后更新时间为 2020 年 2 月。进行了搜索,以确定在过去 5 年中使用细胞系 JEG-3、BeWo、JAR、HTR-8/Svneo、Swan-71 和原代人绒毛外滋养细胞发表的期刊文章数量。
深层滋养细胞侵入母体蜕膜是人类妊娠的一个特殊特征。这种入侵需要精细调节,以便在母婴之间分配资源。需要可靠的 EVT 来源来研究体外子宫环境如何调节这一过程。首先,我们批判性地讨论了目前使用的滋养细胞系存在的问题;例如,它们大多数缺乏 EVT 的定义性标志物 HLA-G 的表达。最近,人类干细胞和类器官技术的进步已应用于胚胎外组织,以开发能够在二维(2D)和三维(3D)生长并分化为 EVT 的滋养细胞系。这意味着目前使用的“滋养细胞”系将很快过时。其次,我们批判性地讨论了研究滋养细胞侵袭的测定方法存在的问题。这些方法缺乏生理相关性,简化了迁移动力学。微流控测定是研究细胞侵袭的有力工具,因为它们只需要少量细胞,这些细胞嵌入细胞外基质的 3D 中。它们的主要优点是能够实时监测细胞运动,从而能够对滋养细胞迁移的动力学进行详细分析。
尽管第一孕期滋养细胞侵袭在子痫前期、FGR、死胎和复发性流产的发病机制中非常重要,但对其仍知之甚少。这里描述的新技术将允许对这一关键过程进行研究。