Dory Constantin, Vercruysse Dries, Yang Ki Youl, Sapra Neil V, Rugar Alison E, Sun Shuo, Lukin Daniil M, Piggott Alexander Y, Zhang Jingyuan L, Radulaski Marina, Lagoudakis Konstantinos G, Su Logan, Vučković Jelena
E. L. Ginzton Laboratory, Stanford University, Stanford, CA, 94305, USA.
Electrical and Computer Engineering, University of California, Davis, CA, 95616, USA.
Nat Commun. 2019 Jul 25;10(1):3309. doi: 10.1038/s41467-019-11343-1.
Diamond hosts optically active color centers with great promise in quantum computation, networking, and sensing. Realization of such applications is contingent upon the integration of color centers into photonic circuits. However, current diamond quantum optics experiments are restricted to single devices and few quantum emitters because fabrication constraints limit device functionalities, thus precluding color center integrated photonic circuits. In this work, we utilize inverse design methods to overcome constraints of cutting-edge diamond nanofabrication methods and fabricate compact and robust diamond devices with unique specifications. Our design method leverages advanced optimization techniques to search the full parameter space for fabricable device designs. We experimentally demonstrate inverse-designed photonic free-space interfaces as well as their scalable integration with two vastly different devices: classical photonic crystal cavities and inverse-designed waveguide-splitters. The multi-device integration capability and performance of our inverse-designed diamond platform represents a critical advancement toward integrated diamond quantum optical circuits.
金刚石中存在光学活性色心,在量子计算、网络和传感领域具有巨大潜力。此类应用的实现取决于将色心集成到光子电路中。然而,目前的金刚石量子光学实验仅限于单个器件和少数量子发射体,因为制造限制限制了器件功能,从而排除了色心集成光子电路。在这项工作中,我们利用逆向设计方法克服前沿金刚石纳米制造方法的限制,制造出具有独特规格的紧凑且坚固的金刚石器件。我们的设计方法利用先进的优化技术在可制造器件设计的完整参数空间中进行搜索。我们通过实验展示了逆向设计的光子自由空间接口,以及它们与两种截然不同的器件的可扩展集成:经典光子晶体腔和逆向设计的波导分束器。我们逆向设计的金刚石平台的多器件集成能力和性能代表了向集成金刚石量子光学电路迈出的关键一步。