Suppr超能文献

甲烷依赖型细菌共聚物对硒酸盐的还原作用。

Methane-dependent selenate reduction by a bacterial consortium.

机构信息

MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China.

Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD, Australia.

出版信息

ISME J. 2021 Dec;15(12):3683-3692. doi: 10.1038/s41396-021-01044-3. Epub 2021 Jun 28.

Abstract

Methanotrophic microorganisms play a critical role in controlling the flux of methane from natural sediments into the atmosphere. Methanotrophs have been shown to couple the oxidation of methane to the reduction of diverse electron acceptors (e.g., oxygen, sulfate, nitrate, and metal oxides), either independently or in consortia with other microbial partners. Although several studies have reported the phenomenon of methane oxidation linked to selenate reduction, neither the microorganisms involved nor the underlying trophic interaction has been clearly identified. Here, we provide the first detailed evidence for interspecies electron transfer between bacterial populations in a bioreactor community where the reduction of selenate is linked to methane oxidation. Metagenomic and metaproteomic analyses of the community revealed a novel species of Methylocystis as the most abundant methanotroph, which actively expressed proteins for oxygen-dependent methane oxidation and fermentation pathways, but lacked the genetic potential for selenate reduction. Pseudoxanthomonas, Piscinibacter, and Rhodocyclaceae populations appeared to be responsible for the observed selenate reduction using proteins initially annotated as periplasmic nitrate reductases, with fermentation by-products released by the methanotrophs as electron donors. The ability for the annotated nitrate reductases to reduce selenate was confirmed by gene knockout studies in an isolate of Pseudoxanthomonas. Overall, this study provides novel insights into the metabolic flexibility of the aerobic methanotrophs that likely allows them to thrive across natural oxygen gradients, and highlights the potential role for similar microbial consortia in linking methane and other biogeochemical cycles in environments where oxygen is limited.

摘要

产甲烷微生物在控制甲烷从自然沉积物向大气中释放通量方面起着关键作用。已证明产甲烷菌可以将甲烷氧化与多种电子受体(如氧气、硫酸盐、硝酸盐和金属氧化物)的还原偶联,无论是独立进行还是与其他微生物伙伴一起进行。尽管有几项研究报告了与硒酸盐还原相关的甲烷氧化现象,但涉及的微生物和潜在的营养相互作用尚未明确确定。在这里,我们提供了第一个详细证据,证明在与甲烷氧化相关的硒酸盐还原的生物反应器群落中,细菌种群之间存在种间电子转移。对群落的宏基因组和宏蛋白质组分析揭示了一种新型的甲基球菌(Methylocystis)作为最丰富的产甲烷菌,它积极表达了依赖氧气的甲烷氧化和发酵途径的蛋白质,但缺乏硒酸盐还原的遗传潜力。假单胞菌、Piscinibacter 和 Rhodocyclaceae 种群似乎负责利用最初注释为周质硝酸盐还原酶的蛋白质观察到的硒酸盐还原,产甲烷菌释放的发酵副产物作为电子供体。通过对假单胞菌分离株的基因敲除研究证实了注释的硝酸盐还原酶还原硒酸盐的能力。总的来说,这项研究为好氧产甲烷菌的代谢灵活性提供了新的见解,这可能使它们能够在自然氧梯度中茁壮成长,并强调了类似微生物共生体在连接甲烷和其他生物地球化学循环中的潜在作用,在氧气有限的环境中。

相似文献

1
Methane-dependent selenate reduction by a bacterial consortium.
ISME J. 2021 Dec;15(12):3683-3692. doi: 10.1038/s41396-021-01044-3. Epub 2021 Jun 28.
2
Methane Oxidation Coupled to Selenate Reduction in a Membrane Bioreactor under Oxygen-Limiting Conditions.
Environ Sci Technol. 2023 Dec 26;57(51):21715-21726. doi: 10.1021/acs.est.3c04958. Epub 2023 Dec 11.
3
Dissolved oxygen has no inhibition on methane oxidation coupled to selenate reduction in a membrane biofilm reactor.
Chemosphere. 2019 Nov;234:855-863. doi: 10.1016/j.chemosphere.2019.06.138. Epub 2019 Jun 19.
4
Microbial Selenate Reduction Driven by a Denitrifying Anaerobic Methane Oxidation Biofilm.
Environ Sci Technol. 2018 Apr 3;52(7):4006-4012. doi: 10.1021/acs.est.7b05046. Epub 2018 Mar 20.
5
A mixed consortium of methanotrophic archaea and bacteria boosts methane-dependent selenate reduction.
Sci Total Environ. 2020 Aug 25;732:139310. doi: 10.1016/j.scitotenv.2020.139310. Epub 2020 May 11.
6
Roles of Oxygen in Methane-dependent Selenate Reduction in a Membrane Biofilm Reactor: Stimulation or Suppression.
Water Res. 2021 Jun 15;198:117150. doi: 10.1016/j.watres.2021.117150. Epub 2021 Apr 14.
9
Methane-Driven Perchlorate Reduction by a Microbial Consortium.
Environ Sci Technol. 2024 Jul 22. doi: 10.1021/acs.est.4c04439.

引用本文的文献

1
Isolation of Ultra-Small -Affiliated Verrucomicrobia from a Methane-Fed Bioreactor.
Microorganisms. 2025 Aug 17;13(8):1922. doi: 10.3390/microorganisms13081922.
2
Novel energy utilization mechanisms of microorganisms in the hydrosphere.
Fundam Res. 2024 Feb 8;5(4):1584-1596. doi: 10.1016/j.fmre.2023.12.014. eCollection 2025 Jul.
3
Microbial diversity and community assembly in heavy metal-contaminated soils: insights from selenium-impacted mining areas.
Front Microbiol. 2025 Apr 14;16:1561678. doi: 10.3389/fmicb.2025.1561678. eCollection 2025.
4
Genomic Insights into Selenate Reduction by Species.
Microorganisms. 2025 Mar 14;13(3):659. doi: 10.3390/microorganisms13030659.
5
Metabolic versatility of aerobic methane-oxidizing bacteria under anoxia in aquatic ecosystems.
Environ Microbiol Rep. 2024 Oct;16(5):e70002. doi: 10.1111/1758-2229.70002.
8
Metabolic coupling between soil aerobic methanotrophs and denitrifiers in rice paddy fields.
Nat Commun. 2024 Apr 24;15(1):3471. doi: 10.1038/s41467-024-47827-y.
9
Selenium-Induced Enhancement in Growth and Rhizosphere Soil Methane Oxidation of Prickly Pear.
Plants (Basel). 2024 Mar 7;13(6):749. doi: 10.3390/plants13060749.
10
was the active and dominant methanotroph in Tibet lake sediments.
ISME Commun. 2024 Mar 4;4(1):ycae032. doi: 10.1093/ismeco/ycae032. eCollection 2024 Jan.

本文引用的文献

1
Making good use of methane to remove oxidized contaminants from wastewater.
Water Res. 2021 Jun 1;197:117082. doi: 10.1016/j.watres.2021.117082. Epub 2021 Mar 23.
2
A mixed consortium of methanotrophic archaea and bacteria boosts methane-dependent selenate reduction.
Sci Total Environ. 2020 Aug 25;732:139310. doi: 10.1016/j.scitotenv.2020.139310. Epub 2020 May 11.
3
A complete domain-to-species taxonomy for Bacteria and Archaea.
Nat Biotechnol. 2020 Sep;38(9):1079-1086. doi: 10.1038/s41587-020-0501-8. Epub 2020 Apr 27.
4
Anaerobic methane oxidation coupled to manganese reduction by members of the Methanoperedenaceae.
ISME J. 2020 Apr;14(4):1030-1041. doi: 10.1038/s41396-020-0590-x. Epub 2020 Jan 27.
6
Metaproteomics method to determine carbon sources and assimilation pathways of species in microbial communities.
Proc Natl Acad Sci U S A. 2018 Jun 12;115(24):E5576-E5584. doi: 10.1073/pnas.1722325115. Epub 2018 May 29.
7
A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction.
ISME J. 2018 Aug;12(8):1929-1939. doi: 10.1038/s41396-018-0109-x. Epub 2018 Apr 16.
8
Microbial Selenate Reduction Driven by a Denitrifying Anaerobic Methane Oxidation Biofilm.
Environ Sci Technol. 2018 Apr 3;52(7):4006-4012. doi: 10.1021/acs.est.7b05046. Epub 2018 Mar 20.
9
Current Trends in Methylotrophy.
Trends Microbiol. 2018 Aug;26(8):703-714. doi: 10.1016/j.tim.2018.01.011. Epub 2018 Feb 19.
10
Microbial megacities fueled by methane oxidation in a mineral spring cave.
ISME J. 2018 Jan;12(1):87-100. doi: 10.1038/ismej.2017.146. Epub 2017 Sep 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验