Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, United States of America.
Phys Med Biol. 2020 Sep 16;65(18):185013. doi: 10.1088/1361-6560/ab95dd.
The magnetic particle imaging (MPI) performance of collections of chains of magnetic nanoparticles with Néel and Brownian relaxation mechanisms was studied by carrying out simulations based on the Landau-Lifshitz-Gilbert equation and rotational Brownian dynamics, respectively. The effect of magnetic dipole-dipole interactions within chains on the time-domain average magnetic dipole moment and corresponding dynamic hysteresis loops, harmonic spectra, and point spread functions (PSFs) of the particle chains was evaluated. The results show that interactions within chains lead to 'square-like' dynamic hysteresis loops and enhanced MPI performance, compared to chains of non-interacting nanoparticles. For nanoparticles with the Brownian relaxation mechanism, subjected to a superimposed alternating and ramping magnetic field mimicking the magnetic field in MPI applications, we studied the dependence of x-space MPI performance of particle chains on parameters such as the amplitude of the alternating magnetic field, surface-to-surface separation between nanoparticles, solvent viscosity, and the number of nanoparticles in a chain. The results illustrate that magnetic dipole-dipole interactions within a chain contribute to enhanced MPI performance, and also suggest that there exist optimal values of the above parameters that lead to the best x-space MPI performance, i.e. maximum peak signal intensity and smallest full-width-at-half-maximum in PSFs.
通过分别基于朗道-利夫希茨-吉尔伯特方程和旋转布朗动力学进行模拟,研究了具有奈尔和布朗松弛机制的磁性纳米粒子链的磁性粒子成像(MPI)性能。评估了链内磁偶极子-偶极子相互作用对粒子链的时域平均磁偶极矩和相应的动态滞后回线、谐频谱以及点扩散函数(PSF)的影响。结果表明,与非相互作用的纳米粒子链相比,链内相互作用导致“方形”动态滞后回线和增强的 MPI 性能。对于具有布朗松弛机制的纳米粒子,在叠加的交流和斜坡磁场下,模拟 MPI 应用中的磁场,我们研究了粒子链的 x 空间 MPI 性能对交流磁场幅度、纳米粒子之间的表面到表面分离、溶剂粘度和链中纳米粒子数量等参数的依赖性。结果表明,链内磁偶极子-偶极子相互作用有助于增强 MPI 性能,并且还表明存在最佳参数值,这些参数值可导致最佳的 x 空间 MPI 性能,即 PSF 中的最大峰值信号强度和最小半峰全宽。
Phys Med Biol. 2017-6-14
ACS Appl Nano Mater. 2024-1-12