Suppr超能文献

粒子相互作用及其对磁性粒子光谱学和成像的影响。

Particle interactions and their effect on magnetic particle spectroscopy and imaging.

作者信息

Moor Lorena, Scheibler Subas, Gerken Lukas, Scheffler Konrad, Thieben Florian, Knopp Tobias, Herrmann Inge K, Starsich Fabian H L

机构信息

Nanoparticle Systems Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.

Particles-Biology Interactions, Department Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.

出版信息

Nanoscale. 2022 May 19;14(19):7163-7173. doi: 10.1039/d1nr08402j.

Abstract

Signal stability is crucial for an accurate diagnosis magnetic particle imaging (MPI). However, MPI-tracer nanoparticles frequently agglomerate during their applications leading to particle interactions altering the signal. Here, we investigate the influence of such magnetic coupling phenomena on the MPI signal. We prepared ZnFeO nanoparticles by flame spray synthesis and controlled their inter-particle distance by varying SiO coating thickness. The silica shell affected the magnetic properties indicating stronger particle interactions for a smaller inter-particle distance. The SiO-coated ZnFeO outperformed the bare sample in magnetic particle spectroscopy (MPS) in terms of signal/noise, however, the shell thickness itself only weakly influenced the MPS signal. To investigate the importance of magnetic coupling effects in more detail, we benchmarked the MPS signal of the bare and SiO-coated Zn-ferrites against commercially available PVP-coated FeO nanoparticles in water and PBS. PBS is known to destabilize nanoparticle colloids mimicking -like agglomeration. The bare and coated Zn-ferrites showed excellent signal stability, despite their agglomeration in PBS. We attribute this to their process-intrinsic aggregated morphology formed during their flame-synthesis, which generates an MPS signal only little affected by PBS. On the other hand, the MPS signal of commercial PVP-coated FeO strongly decreased in PBS compared to water, indicating strongly changed particle interactions. The relevance of this effect was further investigated in a human cell model. For PVP-coated FeO, we detected a strong discrepancy between the particle concentration obtained from the MPS signal and the actual concentration determined ICP-MS. The same trend was observed during their MPI analysis; while SiO-coated Zn-ferrites could be precisely located in water and PBS, PVP-coated FeO could not be detected in PBS at all. This drastically limits the sensitivity and also general applicability of these commercial tracers for MPI and illustrates the advantages of our flame-made Zn-ferrites concerning signal stability and ultimately diagnostic accuracy.

摘要

信号稳定性对于准确的磁粒子成像(MPI)诊断至关重要。然而,MPI示踪纳米颗粒在应用过程中经常发生团聚,导致粒子间相互作用改变信号。在此,我们研究这种磁耦合现象对MPI信号的影响。我们通过火焰喷雾合成制备了ZnFeO纳米颗粒,并通过改变SiO涂层厚度来控制它们的粒子间距离。二氧化硅壳影响了磁性能,表明粒子间距离越小,粒子间相互作用越强。在磁粒子光谱(MPS)中,SiO包覆的ZnFeO在信噪比方面优于裸样品,然而,壳层厚度本身对MPS信号的影响较小。为了更详细地研究磁耦合效应的重要性,我们将裸的和SiO包覆的锌铁氧体的MPS信号与市售的聚乙烯吡咯烷酮(PVP)包覆的FeO纳米颗粒在水和磷酸盐缓冲盐水(PBS)中的信号进行了对比。已知PBS会使纳米颗粒胶体不稳定,模拟类似团聚的情况。尽管裸的和包覆的锌铁氧体在PBS中会发生团聚,但它们仍表现出优异的信号稳定性。我们将此归因于它们在火焰合成过程中形成的与工艺相关的聚集形态,这种形态产生的MPS信号受PBS的影响很小。另一方面,与水相比,市售PVP包覆的FeO在PBS中的MPS信号大幅下降,表明粒子间相互作用发生了显著变化。在人类细胞模型中进一步研究了这种效应的相关性。对于PVP包覆的FeO,我们检测到从MPS信号获得的颗粒浓度与通过电感耦合等离子体质谱(ICP-MS)测定的实际浓度之间存在很大差异。在它们的MPI分析过程中也观察到了相同的趋势;虽然SiO包覆的锌铁氧体在水和PBS中都能被精确定位,但PVP包覆的FeO在PBS中根本无法被检测到。这极大地限制了这些商业示踪剂在MPI中的灵敏度和普遍适用性,并说明了我们通过火焰制备的锌铁氧体在信号稳定性以及最终诊断准确性方面的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/205b/9119029/61b9d1fb1776/d1nr08402j-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验