Suppr超能文献

用于磁粒子成像中提高图像分辨率的低驱动场幅度。

Low drive field amplitude for improved image resolution in magnetic particle imaging.

作者信息

Croft Laura R, Goodwill Patrick W, Konkle Justin J, Arami Hamed, Price Daniel A, Li Ada X, Saritas Emine U, Conolly Steven M

机构信息

Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720-1762.

Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195-2120.

出版信息

Med Phys. 2016 Jan;43(1):424. doi: 10.1118/1.4938097.

Abstract

PURPOSE

Magnetic particle imaging (MPI) is a new imaging technology that directly detects superparamagnetic iron oxide nanoparticles. The technique has potential medical applications in angiography, cell tracking, and cancer detection. In this paper, the authors explore how nanoparticle relaxation affects image resolution. Historically, researchers have analyzed nanoparticle behavior by studying the time constant of the nanoparticle physical rotation. In contrast, in this paper, the authors focus instead on how the time constant of nanoparticle rotation affects the final image resolution, and this reveals nonobvious conclusions for tailoring MPI imaging parameters for optimal spatial resolution.

METHODS

The authors first extend x-space systems theory to include nanoparticle relaxation. The authors then measure the spatial resolution and relative signal levels in an MPI relaxometer and a 3D MPI imager at multiple drive field amplitudes and frequencies. Finally, these image measurements are used to estimate relaxation times and nanoparticle phase lags.

RESULTS

The authors demonstrate that spatial resolution, as measured by full-width at half-maximum, improves at lower drive field amplitudes. The authors further determine that relaxation in MPI can be approximated as a frequency-independent phase lag. These results enable the authors to accurately predict MPI resolution and sensitivity across a wide range of drive field amplitudes and frequencies.

CONCLUSIONS

To balance resolution, signal-to-noise ratio, specific absorption rate, and magnetostimulation requirements, the drive field can be a low amplitude and high frequency. Continued research into how the MPI drive field affects relaxation and its adverse effects will be crucial for developing new nanoparticles tailored to the unique physics of MPI. Moreover, this theory informs researchers how to design scanning sequences to minimize relaxation-induced blurring for better spatial resolution or to exploit relaxation-induced blurring for MPI with molecular contrast.

摘要

目的

磁粒子成像(MPI)是一种直接检测超顺磁性氧化铁纳米颗粒的新型成像技术。该技术在血管造影、细胞追踪和癌症检测等方面具有潜在的医学应用价值。在本文中,作者探讨了纳米颗粒弛豫如何影响图像分辨率。从历史上看,研究人员通过研究纳米颗粒物理旋转的时间常数来分析纳米颗粒的行为。相比之下,在本文中,作者关注的是纳米颗粒旋转的时间常数如何影响最终的图像分辨率,这为调整MPI成像参数以实现最佳空间分辨率揭示了一些不明显的结论。

方法

作者首先扩展了x空间系统理论,将纳米颗粒弛豫纳入其中。然后,作者在多个驱动场幅度和频率下,测量了MPI弛豫仪和3D MPI成像仪中的空间分辨率和相对信号水平。最后,利用这些图像测量结果来估计弛豫时间和纳米颗粒的相位滞后。

结果

作者证明,以半高宽测量的空间分辨率在较低驱动场幅度下会提高。作者进一步确定,MPI中的弛豫可以近似为与频率无关的相位滞后。这些结果使作者能够准确预测在广泛的驱动场幅度和频率范围内的MPI分辨率和灵敏度。

结论

为了平衡分辨率、信噪比、比吸收率和磁刺激要求,驱动场可以采用低幅度和高频。继续研究MPI驱动场如何影响弛豫及其不利影响,对于开发适合MPI独特物理特性的新型纳米颗粒至关重要。此外,该理论还告知研究人员如何设计扫描序列,以最小化弛豫引起的模糊,从而获得更好的空间分辨率,或者利用弛豫引起的模糊来实现具有分子对比度的MPI。

相似文献

3
Relaxation in x-space magnetic particle imaging.x 空间磁共振粒子成像弛豫。
IEEE Trans Med Imaging. 2012 Dec;31(12):2335-42. doi: 10.1109/TMI.2012.2217979. Epub 2012 Sep 7.
4
Two dimensional magnetic particle spectrometry.二维磁性粒子光谱法
Phys Med Biol. 2017 May 7;62(9):3378-3391. doi: 10.1088/1361-6560/aa5bcd. Epub 2017 Jan 31.
7
Twenty-fold acceleration of 3D projection reconstruction MPI.三维投影重建MPI的二十倍加速
Biomed Tech (Berl). 2013 Dec;58(6):565-76. doi: 10.1515/bmt-2012-0062.
9
Relaxation-based viscosity mapping for magnetic particle imaging.基于弛豫的磁粒子成像粘度映射
Phys Med Biol. 2017 May 7;62(9):3422-3439. doi: 10.1088/1361-6560/62/9/3422. Epub 2017 Apr 5.
10
Trajectory analysis for field free line magnetic particle imaging.无场线磁粒子成像的轨迹分析。
Med Phys. 2019 Apr;46(4):1592-1607. doi: 10.1002/mp.13411. Epub 2019 Feb 22.

引用本文的文献

5
Harmonic dependence of thermal magnetic particle imaging.热磁粒子成像的谐波依赖性
Sci Rep. 2023 Sep 22;13(1):15762. doi: 10.1038/s41598-023-42620-1.

本文引用的文献

1
Magnetic particle imaging with tailored iron oxide nanoparticle tracers.使用定制氧化铁纳米颗粒示踪剂的磁粒子成像
IEEE Trans Med Imaging. 2015 May;34(5):1077-84. doi: 10.1109/TMI.2014.2375065. Epub 2014 Nov 25.
4
Magnetostimulation limits in magnetic particle imaging.磁粒子成像中的磁刺激限制。
IEEE Trans Med Imaging. 2013 Sep;32(9):1600-10. doi: 10.1109/TMI.2013.2260764. Epub 2013 Apr 30.
5
Linearity and shift invariance for quantitative magnetic particle imaging.定量磁粒子成像的线性和位移不变性。
IEEE Trans Med Imaging. 2013 Sep;32(9):1565-75. doi: 10.1109/TMI.2013.2257177. Epub 2013 Apr 5.
7
Projection reconstruction magnetic particle imaging.投影重建磁粒子成像。
IEEE Trans Med Imaging. 2013 Feb;32(2):338-47. doi: 10.1109/TMI.2012.2227121. Epub 2012 Nov 15.
9
Relaxation in x-space magnetic particle imaging.x 空间磁共振粒子成像弛豫。
IEEE Trans Med Imaging. 2012 Dec;31(12):2335-42. doi: 10.1109/TMI.2012.2217979. Epub 2012 Sep 7.
10
Projection x-space magnetic particle imaging.投影 x 空间磁粒子成像。
IEEE Trans Med Imaging. 2012 May;31(5):1076-85. doi: 10.1109/TMI.2012.2185247.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验