Suppr超能文献

用于肺部体内磁粒子成像的各向异性形状高性能纳米磁流体

Shape Anisotropy-Governed High-Performance Nanomagnetosol for In Vivo Magnetic Particle Imaging of Lungs.

机构信息

Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA.

Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA.

出版信息

Small. 2024 Feb;20(5):e2305300. doi: 10.1002/smll.202305300. Epub 2023 Sep 21.

Abstract

Caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), coronavirus disease 2019 (COVID-19) has shown extensive lung manifestations in vulnerable individuals, putting lung imaging and monitoring at the forefront of early detection and treatment. Magnetic particle imaging (MPI) is an imaging modality, which can bring excellent contrast, sensitivity, and signal-to-noise ratios to lung imaging for the development of new theranostic approaches for respiratory diseases. Advances in MPI tracers would offer additional improvements and increase the potential for clinical translation of MPI. Here, a high-performance nanotracer based on shape anisotropy of magnetic nanoparticles is developed and its use in MPI imaging of the lung is demonstrated. Shape anisotropy proves to be a critical parameter for increasing signal intensity and resolution and exceeding those properties of conventional spherical nanoparticles. The 0D nanoparticles exhibit a 2-fold increase, while the 1D nanorods have a > 5-fold increase in signal intensity when compared to VivoTrax. Newly designed 1D nanorods displayed high signal intensities and excellent resolution in lung images. A spatiotemporal lung imaging study in mice revealed that this tracer offers new opportunities for monitoring disease and guiding intervention.

摘要

由严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)引起的 2019 年冠状病毒病(COVID-19)在易感染个体中表现出广泛的肺部表现,使肺部成像和监测成为早期发现和治疗的重点。磁性粒子成像(MPI)是一种成像方式,可以为肺部成像带来出色的对比度、灵敏度和信噪比,为呼吸疾病的新治疗方法的发展提供支持。MPI 示踪剂的进步将提供额外的改进,并增加 MPI 临床转化的潜力。在这里,开发了一种基于磁性纳米粒子形状各向异性的高性能纳米示踪剂,并证明了其在肺部 MPI 成像中的应用。形状各向异性被证明是增加信号强度和分辨率并超过传统球形纳米粒子性能的关键参数。与 VivoTrax 相比,0D 纳米粒子的信号强度增加了 2 倍,而 1D 纳米棒的信号强度增加了>5 倍。新设计的 1D 纳米棒在肺部图像中显示出高信号强度和优异的分辨率。对小鼠的时空肺部成像研究表明,这种示踪剂为监测疾病和指导干预提供了新的机会。

相似文献

1
Shape Anisotropy-Governed High-Performance Nanomagnetosol for In Vivo Magnetic Particle Imaging of Lungs.
Small. 2024 Feb;20(5):e2305300. doi: 10.1002/smll.202305300. Epub 2023 Sep 21.
2
Development of Iron Oxide Nanochains as a Sensitive Magnetic Particle Imaging Tracer for Cancer Detection.
ACS Appl Mater Interfaces. 2025 Apr 9;17(14):20859-20871. doi: 10.1021/acsami.5c00332. Epub 2025 Mar 26.
3
Design of superparamagnetic nanoparticles for magnetic particle imaging (MPI).
Int J Mol Sci. 2013 Sep 11;14(9):18682-710. doi: 10.3390/ijms140918682.
4
Monodisperse magnetite nanoparticle tracers for in vivo magnetic particle imaging.
Biomaterials. 2013 May;34(15):3837-45. doi: 10.1016/j.biomaterials.2013.01.087. Epub 2013 Feb 21.
6
In vivo multimodal magnetic particle imaging (MPI) with tailored magneto/optical contrast agents.
Biomaterials. 2015 Jun;52:251-61. doi: 10.1016/j.biomaterials.2015.02.040. Epub 2015 Feb 28.
8
Superparamagnetic iron oxides as MPI tracers: A primer and review of early applications.
Adv Drug Deliv Rev. 2019 Jan 1;138:293-301. doi: 10.1016/j.addr.2018.12.007. Epub 2018 Dec 13.
9
Magnetic Particle Imaging: Current Applications in Biomedical Research.
J Magn Reson Imaging. 2020 Jun;51(6):1659-1668. doi: 10.1002/jmri.26875. Epub 2019 Jul 22.
10
Carbon-coated FeCo nanoparticles as sensitive magnetic-particle-imaging tracers with photothermal and magnetothermal properties.
Nat Biomed Eng. 2020 Mar;4(3):325-334. doi: 10.1038/s41551-019-0506-0. Epub 2020 Feb 3.

引用本文的文献

1
Spillover can limit accurate signal quantification in MPI.
Npj Imaging. 2025 May 6;3(1):20. doi: 10.1038/s44303-025-00084-0.
2
Microfluidic formulation and characterization of size-tunable microparticle magnetic particle imaging tracers.
J Magn Magn Mater. 2025 Jun 15;622. doi: 10.1016/j.jmmm.2025.172987. Epub 2025 Mar 16.
3
Advances in engineering nanoparticles for magnetic particle imaging (MPI).
Sci Adv. 2025 Jan 10;11(2):eado7356. doi: 10.1126/sciadv.ado7356. Epub 2025 Jan 8.
6
Post-synthesis Oxidation of Superparamagnetic Iron Oxide Nanoparticles to Enhance Magnetic Particle Imaging Performance.
ACS Appl Nano Mater. 2024 Jan 12;7(1):279-291. doi: 10.1021/acsanm.3c04442. Epub 2023 Dec 22.
7
Machine Learning and Deep Learning Applications in Magnetic Particle Imaging.
J Magn Reson Imaging. 2025 Jan;61(1):42-51. doi: 10.1002/jmri.29294. Epub 2024 Feb 15.
8
The Application of Nanovaccines in Autoimmune Diseases.
Int J Nanomedicine. 2024 Jan 12;19:367-388. doi: 10.2147/IJN.S440612. eCollection 2024.

本文引用的文献

1
Temperature-Dependent Changes in Resolution and Coercivity of Superparamagnetic and Superferromagnetic Iron Oxide Nanoparticles.
Int J Magn Part Imaging. 2023;9(1 Suppl1). doi: 10.18416/IJMPI.2023.2303056. Epub 2023 Mar 19.
2
PET Imaging of Lung Cancers in Precision Medicine: Current Landscape and Future Perspective.
Mol Pharm. 2022 Oct 3;19(10):3471-3483. doi: 10.1021/acs.molpharmaceut.2c00353. Epub 2022 Jun 30.
3
Magnetic Particle Imaging of Magnetotactic Bacteria as Living Contrast Agents Is Improved by Altering Magnetosome Arrangement.
Nano Lett. 2022 Jun 22;22(12):4630-4639. doi: 10.1021/acs.nanolett.1c05042. Epub 2022 Jun 10.
4
Influence of the Aspect Ratio of Iron Oxide Nanorods on Hysteresis-Loss-Mediated Magnetic Hyperthermia.
ACS Appl Bio Mater. 2021 Jun 21;4(6):4809-4820. doi: 10.1021/acsabm.1c00040. Epub 2021 May 27.
5
Superferromagnetic Nanoparticles Enable Order-of-Magnitude Resolution & Sensitivity Gain in Magnetic Particle Imaging.
Small Methods. 2021 Nov;5(11):e2100796. doi: 10.1002/smtd.202100796. Epub 2021 Sep 12.
6
3D Magnetic Particle Imaging of Human Stem Cell-Derived Islet Organoid Transplantation Using a Machine Learning Algorithm.
Front Cell Dev Biol. 2021 Aug 12;9:704483. doi: 10.3389/fcell.2021.704483. eCollection 2021.
7
Engineering of magnetic nanoparticles as magnetic particle imaging tracers.
Chem Soc Rev. 2021 Jul 19;50(14):8102-8146. doi: 10.1039/d0cs00260g.
8
Long circulating tracer tailored for magnetic particle imaging.
Nanotheranostics. 2021 Mar 24;5(3):348-361. doi: 10.7150/ntno.58548. eCollection 2021.
9
Mixed Metal Metal-Organic Frameworks Derived Carbon Supporting ZnFeO/C for High-Performance Magnetic Particle Imaging.
Nano Lett. 2021 Apr 14;21(7):2730-2737. doi: 10.1021/acs.nanolett.0c04455. Epub 2021 Apr 2.
10
Computational predictions of enhanced magnetic particle imaging performance by magnetic nanoparticle chains.
Phys Med Biol. 2020 Sep 16;65(18):185013. doi: 10.1088/1361-6560/ab95dd.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验