Suppr超能文献

植物乳杆菌 12 胞外多糖对福氏志贺菌的抗生物膜活性。

Antibiofilm Activity of Lactobacillus plantarum 12 Exopolysaccharides against Shigella flexneri.

机构信息

School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China.

School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China

出版信息

Appl Environ Microbiol. 2020 Jul 20;86(15). doi: 10.1128/AEM.00694-20.

Abstract

In developing countries, is the most common enteric pathogen causing bacillary dysentery. Biofilm formation by can cause the emergence of antibiotic-resistant strains, which poses serious threats to food safety and human health. In this study, the effects of 12 exopolysaccharides (L-EPSs) and exopolysaccharides (S-EPSs) on CMCC51574 biofilm formation were investigated. The results showed that L-EPS could decrease polysaccharide production in the extracellular polymeric matrix of and inhibit biofilm formation by L-EPS could decrease the minimum biofilm elimination concentration (MBEC) of antibiotics against biofilm and inhibit adhesion to and invasion into HT-29 cell monolayers, which might be ascribed to biofilm disturbance by L-EPS. In contrast, S-EPS exhibited the opposite effects compared to L-EPS. The monosaccharide composition analysis showed that L-EPS was composed of mannose, glucuronic acid, galactosamine, glucose, galactose, and xylose, with the molar ratio of 32.26:0.99:1.79:5.63:0.05:4.07, while S-EPS was composed of mannose, glucuronic acid, galactosamine, glucose, and galactose, with the molar ratio of 25.43:2.28:7.13:5.35. L-EPS was separated into the neutral polysaccharide L-EPS 1-1 and the acidic polysaccharide L-EPS 2-1 by ion-exchange chromatography and gel chromatography. L-EPS 2-1 exerted higher antibiofilm activity than L-EPS 1-1. The antibiofilm activity of L-EPS might be associated with its structure. is a widespread foodborne pathogen causing food contamination and responsible for food poisoning outbreaks related to various foods in developing countries. Not only has biofilm formation by been difficult to eliminate, but it has also increased the drug resistance of the strain. In the present study, it was demonstrated that L-EPSs secreted by 12 could inhibit biofilm formation on, adhesion to, and invasion into HT-29 cells. Also, L-EPSs could decrease the minimum biofilm elimination concentration (MBEC) of the antibiotics used against biofilm. Therefore, L-EPSs were shown to be bioactive macromolecules with the potential ability to act against infections.

摘要

在发展中国家,是引起细菌性痢疾的最常见肠道病原体。生物膜的形成可导致抗生素耐药菌株的出现,对食品安全和人类健康构成严重威胁。在本研究中,研究了 12 种胞外多糖(L-EPSs)和 种胞外多糖(S-EPSs)对 CMCC51574 生物膜形成的影响。结果表明,L-EPS 可减少 胞外聚合基质中多糖的产生,抑制生物膜的形成,L-EPS 可降低抗生素对生物膜的最低抑菌浓度(MBEC),并抑制 对 HT-29 细胞单层的黏附和侵袭,这可能归因于 L-EPS 对生物膜的干扰。相比之下,S-EPS 与 L-EPS 的作用相反。单糖组成分析表明,L-EPS 由甘露糖、葡萄糖醛酸、半乳糖胺、葡萄糖、半乳糖和木糖组成,摩尔比为 32.26:0.99:1.79:5.63:0.05:4.07,而 S-EPS 由甘露糖、葡萄糖醛酸、半乳糖胺、葡萄糖和半乳糖组成,摩尔比为 25.43:2.28:7.13:5.35。L-EPS 通过离子交换层析和凝胶层析分离为中性多糖 L-EPS 1-1 和酸性多糖 L-EPS 2-1。L-EPS 2-1 比 L-EPS 1-1 具有更高的抗生物膜活性。L-EPS 的抗生物膜活性可能与其结构有关。是一种广泛存在的食源性病原体,可导致食物污染,并导致发展中国家与各种食物有关的食物中毒暴发。不仅难以消除 的生物膜形成,而且还增加了菌株的耐药性。在本研究中,证明了 12 分泌的 L-EPS 可抑制生物膜在 上的形成、黏附和侵袭 HT-29 细胞。此外,L-EPS 还可降低用于对抗 生物膜的抗生素的最低生物膜消除浓度(MBEC)。因此,L-EPS 是具有抗 感染潜力的生物活性大分子。

相似文献

1
Antibiofilm Activity of Lactobacillus plantarum 12 Exopolysaccharides against Shigella flexneri.
Appl Environ Microbiol. 2020 Jul 20;86(15). doi: 10.1128/AEM.00694-20.
4
The Chemical Structure Properties and Promoting Biofilm Activity of Exopolysaccharide Produced by .
Front Microbiol. 2022 Feb 4;12:807397. doi: 10.3389/fmicb.2021.807397. eCollection 2021.
6
Characterization and bioactivities of an exopolysaccharide produced by Lactobacillus plantarum YW32.
Int J Biol Macromol. 2015 Mar;74:119-26. doi: 10.1016/j.ijbiomac.2014.12.006. Epub 2014 Dec 19.
8
Characterization and bioactivities of the exopolysaccharide from a probiotic strain of Lactobacillus plantarum WLPL04.
J Dairy Sci. 2017 Sep;100(9):6895-6905. doi: 10.3168/jds.2016-11944. Epub 2017 Jul 12.
10
Ferulic Acid Inactivates through Cell Membrane Destructieon, Biofilm Retardation, and Altered Gene Expression.
J Agric Food Chem. 2020 Jul 8;68(27):7121-7131. doi: 10.1021/acs.jafc.0c01901. Epub 2020 Jun 26.

引用本文的文献

1
Advances in Microbial Exopolysaccharides: Present and Future Applications.
Biomolecules. 2024 Sep 16;14(9):1162. doi: 10.3390/biom14091162.
2
Multiple biological characteristics and functions of intestinal biofilm extracellular polymers: friend or foe?
Front Microbiol. 2024 Aug 19;15:1445630. doi: 10.3389/fmicb.2024.1445630. eCollection 2024.
3
Postbiotics are a candidate for new functional foods.
Food Chem X. 2024 Jul 14;23:101650. doi: 10.1016/j.fochx.2024.101650. eCollection 2024 Oct 30.
5
Healing wounds, defeating biofilms: in tackling MRSA infections.
Front Microbiol. 2023 Dec 5;14:1284195. doi: 10.3389/fmicb.2023.1284195. eCollection 2023.
6
Anti-virulence and bactericidal activities of Stattic against .
Appl Environ Microbiol. 2023 Dec 21;89(12):e0107423. doi: 10.1128/aem.01074-23. Epub 2023 Nov 30.
7
Microbial exopolysaccharides in the biomedical and pharmaceutical industries.
Heliyon. 2023 Aug 1;9(8):e18613. doi: 10.1016/j.heliyon.2023.e18613. eCollection 2023 Aug.
8
Inhibitory effects of fucoidan from Laminaria japonica against some pathogenic bacteria and SARS-CoV-2 depend on its large molecular weight.
Int J Biol Macromol. 2023 Feb 28;229:413-421. doi: 10.1016/j.ijbiomac.2022.12.307. Epub 2022 Dec 29.
9
Polysaccharide Improved Spleen Deficiency in Mice by Modulating Gut Microbiota and Energy Related Metabolisms.
Front Pharmacol. 2022 Apr 26;13:862763. doi: 10.3389/fphar.2022.862763. eCollection 2022.
10
The Chemical Structure Properties and Promoting Biofilm Activity of Exopolysaccharide Produced by .
Front Microbiol. 2022 Feb 4;12:807397. doi: 10.3389/fmicb.2021.807397. eCollection 2021.

本文引用的文献

1
Correction: Characterization of an exopolysaccharide from probiont MSI12 and its effect on the disruption of biofilm.
RSC Adv. 2021 Jun 4;11(33):20003-20005. doi: 10.1039/d1ra90123k. eCollection 2021 Jun 3.
2
Prevalence and molecular characterization of multidrug-resistant Shigella species of food origins and their inactivation by specific lytic bacteriophages.
Int J Food Microbiol. 2019 Sep 16;305:108252. doi: 10.1016/j.ijfoodmicro.2019.108252. Epub 2019 Jun 13.
3
Identification of Extracellular DNA-Binding Proteins in the Biofilm Matrix.
mBio. 2019 Jun 25;10(3):e01137-19. doi: 10.1128/mBio.01137-19.
4
A comprehensive review of anticancer, immunomodulatory and health beneficial effects of the lactic acid bacteria exopolysaccharides.
Carbohydr Polym. 2019 Aug 1;217:79-89. doi: 10.1016/j.carbpol.2019.04.025. Epub 2019 Apr 20.
5
Plasmids of Shigella flexneri serotype 1c strain Y394 provide advantages to bacteria in the host.
BMC Microbiol. 2019 Apr 29;19(1):86. doi: 10.1186/s12866-019-1455-1.
6
Monosaccharide composition influence and immunomodulatory effects of probiotic exopolysaccharides.
Int J Biol Macromol. 2019 Jul 15;133:575-582. doi: 10.1016/j.ijbiomac.2019.04.109. Epub 2019 Apr 18.
8
Shigella IpaA Binding to Talin Stimulates Filopodial Capture and Cell Adhesion.
Cell Rep. 2019 Jan 22;26(4):921-932.e6. doi: 10.1016/j.celrep.2018.12.091.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验