Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK.
Neuropharmacology. 2020 Oct 1;176:108135. doi: 10.1016/j.neuropharm.2020.108135. Epub 2020 May 21.
γ-aminobutyric acid type-A receptors (GABARs) are inhibitory ligand-gated ion channels in the brain that are crucial for controlling neuronal excitation. To explore their physiological roles in cellular and neural network activity, it is important to understand why specific GABAR isoforms are distributed not only to various brain regions and cell types, but also to specific areas of the membrane in individual neurons. To address this aim we have developed a novel photosensitive compound, azogabazine, that targets and reversibly inhibits GABARs. The receptor selectivity of the compound is based on the competitive antagonist, gabazine, and photosensitivity is conferred by a photoisomerisable azobenzene group. Azogabazine can exist in either cis or trans conformations that are controlled by UV and blue light respectively, to affect receptor inhibition. We report that the trans-isomer preferentially binds and inhibits GABAR function, whilst promotion of the cis-isomer caused unbinding of azogabazine from GABARs. Using cultured cerebellar granule cells, azogabazine in conjunction with UV light applied to defined membrane domains, revealed higher densities of GABARs at somatic inhibitory synapses compared to those populating proximal dendritic zones, even though the latter displayed a higher number of synapses per unit area of membrane. Azogabazine also revealed more pronounced GABA-mediated inhibition of action potential firing in proximal dendrites compared to the soma. Overall, azogabazine is a valuable addition to the photochemical toolkit that can be used to interrogate GABAR function and inhibition.
γ-氨基丁酸 A 型受体(GABARs)是大脑中的抑制性配体门控离子通道,对控制神经元兴奋至关重要。为了探索其在细胞和神经网络活动中的生理作用,了解为什么特定的 GABAR 同工型不仅分布在不同的脑区和细胞类型中,而且分布在单个神经元的膜的特定区域中非常重要。为了实现这一目标,我们开发了一种新型光敏化合物,即偶氮胍嗪,它可以靶向并可逆地抑制 GABARs。该化合物的受体选择性基于竞争性拮抗剂gabazine,而光敏性则由可光异构化的偶氮苯基团赋予。偶氮胍嗪可以存在于顺式或反式构象中,分别由紫外线和蓝光控制,从而影响受体抑制。我们报告说,反式异构体优先结合并抑制 GABAR 功能,而促进顺式异构体导致偶氮胍嗪从 GABARs 上解吸。使用培养的小脑颗粒细胞,偶氮胍嗪与紫外线结合应用于特定的膜域,发现在体细胞抑制性突触处的 GABARs 密度高于在近侧树突区的密度,尽管后者在单位膜面积上显示出更多的突触。与在体细胞相比,偶氮胍嗪还揭示了在近侧树突中更明显的 GABA 介导的动作电位放电抑制。总体而言,偶氮胍嗪是光化学工具包中的一个有价值的补充,可以用于研究 GABAR 功能和抑制。