Suppr超能文献

使用深度学习方法实现鼠肺部疾病模型的 μCT 分析自动化和改进。

Automatization and improvement of μCT analysis for murine lung disease models using a deep learning approach.

机构信息

Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany.

Department of Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany.

出版信息

Respir Res. 2020 May 24;21(1):124. doi: 10.1186/s12931-020-01370-8.

Abstract

BACKGROUND

One of the main diagnostic tools for lung diseases in humans is computed tomography (CT). A miniaturized version, micro-CT (μCT) is utilized to examine small rodents including mice. However, fully automated threshold-based segmentation and subsequent quantification of severely damaged lungs requires visual inspection and manual correction.

METHODS

Here we demonstrate the use of densitometry on regions of interest (ROI) in automatically detected portions of the lung, thus avoiding the need for lung segmentation. Utilizing deep learning approaches, the middle part of the lung is found in a μCT-stack and a ROI is placed in the left and the right lobe.

RESULTS

The intensity values within the ROIs of the μCT images were collected and subsequently used for the calculation of different lung-related parameters, such as mean lung attenuation (MLA), mode, full width at half maximum (FWHM), and skewness. For validation, the densitometric approach was correlated with histological readouts (Ashcroft Score, Mean Linear Intercept).

CONCLUSION

We here show an automated tool that allows rapid and in-depth analysis of μCT scans of different murine models of lung disease.

摘要

背景

在人类肺部疾病的主要诊断工具之一是计算机断层扫描(CT)。一种微型化版本的微计算机断层扫描(μCT)被用于检查包括老鼠在内的小型啮齿动物。然而,严重受损肺部的全自动基于阈值的分割和后续定量分析需要进行目视检查和手动校正。

方法

在这里,我们展示了在自动检测到的肺部部分的感兴趣区域(ROI)上进行密度测量的用途,从而避免了肺部分割的需要。利用深度学习方法,在μCT 堆栈中找到肺部的中间部分,并在左叶和右叶中放置一个 ROI。

结果

收集 μCT 图像的 ROI 内的强度值,并随后用于计算不同的与肺部相关的参数,如平均肺衰减(MLA)、模式、半最大值全宽(FWHM)和偏度。为了验证,密度测量方法与组织学读数(Ashcroft 评分、平均线性截距)相关联。

结论

我们在这里展示了一种自动化工具,可快速深入地分析不同肺部疾病的小鼠模型的 μCT 扫描。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffea/7245846/afe7fa6a0e3d/12931_2020_1370_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验