Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany.
Department of Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany.
Respir Res. 2020 May 24;21(1):124. doi: 10.1186/s12931-020-01370-8.
One of the main diagnostic tools for lung diseases in humans is computed tomography (CT). A miniaturized version, micro-CT (μCT) is utilized to examine small rodents including mice. However, fully automated threshold-based segmentation and subsequent quantification of severely damaged lungs requires visual inspection and manual correction.
Here we demonstrate the use of densitometry on regions of interest (ROI) in automatically detected portions of the lung, thus avoiding the need for lung segmentation. Utilizing deep learning approaches, the middle part of the lung is found in a μCT-stack and a ROI is placed in the left and the right lobe.
The intensity values within the ROIs of the μCT images were collected and subsequently used for the calculation of different lung-related parameters, such as mean lung attenuation (MLA), mode, full width at half maximum (FWHM), and skewness. For validation, the densitometric approach was correlated with histological readouts (Ashcroft Score, Mean Linear Intercept).
We here show an automated tool that allows rapid and in-depth analysis of μCT scans of different murine models of lung disease.
在人类肺部疾病的主要诊断工具之一是计算机断层扫描(CT)。一种微型化版本的微计算机断层扫描(μCT)被用于检查包括老鼠在内的小型啮齿动物。然而,严重受损肺部的全自动基于阈值的分割和后续定量分析需要进行目视检查和手动校正。
在这里,我们展示了在自动检测到的肺部部分的感兴趣区域(ROI)上进行密度测量的用途,从而避免了肺部分割的需要。利用深度学习方法,在μCT 堆栈中找到肺部的中间部分,并在左叶和右叶中放置一个 ROI。
收集 μCT 图像的 ROI 内的强度值,并随后用于计算不同的与肺部相关的参数,如平均肺衰减(MLA)、模式、半最大值全宽(FWHM)和偏度。为了验证,密度测量方法与组织学读数(Ashcroft 评分、平均线性截距)相关联。
我们在这里展示了一种自动化工具,可快速深入地分析不同肺部疾病的小鼠模型的 μCT 扫描。