Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim, Germany.
Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology (IMBB/FORTH), 70013 Heraklion, Greece.
Pestic Biochem Physiol. 2020 Jun;166:104583. doi: 10.1016/j.pestbp.2020.104583. Epub 2020 Apr 13.
Insecticides of the tetronic/tetramic acid family (cyclic ketoenols) are widely used to control sucking pests such as whiteflies, aphids and mites. They act as inhibitors of acetyl-CoA carboxylase (ACC), a key enzyme for lipid biosynthesis across taxa. While it is well documented that plant ACCs targeted by herbicides have developed resistance associated with mutations at the carboxyltransferase (CT) domain, resistance to ketoenols in invertebrate pests has been previously associated either with metabolic resistance or with non-validated candidate mutations in different ACC domains. A recent study revealed high levels of spiromesifen and spirotetramat resistance in Spanish field populations of the whitefly Bemisia tabaci that was not thought to be associated with metabolic resistance. We confirm the presence of high resistance levels (up to >640-fold) against ketoenol insecticides in both Spanish and Australian B. tabaci strains of the MED and MEAM1 species, respectively. RNAseq analysis revealed the presence of an ACC variant bearing a mutation that results in an amino acid substitution, A2083V, in a highly conserved region of the CT domain. F1 progeny resulting from reciprocal crosses between susceptible and resistant lines are almost fully resistant, suggesting an autosomal dominant mode of inheritance. In order to functionally investigate the contribution of this mutation and other candidate mutations previously reported in resistance phenotypes, we used CRISPR/Cas9 to generate genome modified Drosophila lines. Toxicity bioassays using multiple transgenic fly lines confirmed that A2083V causes high levels of resistance to commercial ketoenols. We therefore developed a pyrosequencing-based diagnostic assay to map the spread of the resistance alleles in field-collected samples from Spain. Our screening confirmed the presence of target-site resistance in numerous field-populations collected in Sevilla, Murcia and Almeria. This emphasizes the importance of implementing appropriate resistance management strategies to prevent or slow the spread of resistance through global whitefly populations.
四氢呋喃酸/四氢呋喃酸族杀虫剂(环状酮醇)被广泛用于防治以粉虱、蚜虫和螨虫为代表的刺吸式害虫。它们作为乙酰辅酶 A 羧化酶(ACC)的抑制剂,在不同的生物分类中对脂类生物合成起到关键作用。尽管已有充分的文献记载表明,被除草剂靶向的植物 ACC 已经进化出与羧基转移酶(CT)结构域突变相关的抗性,但以前与昆虫害虫酮醇类杀虫剂抗性相关的机制要么是代谢抗性,要么是在不同的 ACC 结构域中存在未经证实的候选突变。最近的一项研究表明,在西班牙野外粉虱烟粉虱种群中,螺旋霉素和螺虫乙酯的抗性水平很高,而这似乎与代谢抗性无关。我们确认了在西班牙和澳大利亚的烟粉虱 MED 和 MEAM1 种群中,分别存在对酮醇类杀虫剂具有高抗性水平(高达 >640 倍)的品系。RNAseq 分析揭示了存在一个 ACC 变体,其携带一个突变,导致 CT 结构域中一个高度保守区域的氨基酸替换 A2083V。来自敏感和抗性系之间的正反交的 F1 后代几乎完全具有抗性,表明这是一种常染色体显性遗传模式。为了功能研究该突变以及以前在抗性表型中报道的其他候选突变的贡献,我们使用 CRISPR/Cas9 生成了经过基因修饰的果蝇系。使用多个转基因果蝇系进行的毒性生物测定证实,A2083V 导致对商业酮醇类杀虫剂的高水平抗性。因此,我们开发了一种基于焦磷酸测序的诊断测定法,以绘制在西班牙田间采集的样本中抗性等位基因的传播情况。我们的筛选证实了在塞维利亚、穆尔西亚和阿尔梅里亚等地采集的大量田间种群中存在靶标抗性。这强调了实施适当的抗性管理策略的重要性,以防止或减缓全球粉虱种群中抗性的传播。