Suppr超能文献

通过沿骨架轴排列连接体跃迁偶极子来提高金属-有机框架内的能量传递。

Improving Energy Transfer within Metal-Organic Frameworks by Aligning Linker Transition Dipoles along the Framework Axis.

机构信息

Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States.

Department of Chemical and Biological Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States.

出版信息

J Am Chem Soc. 2020 Jun 24;142(25):11192-11202. doi: 10.1021/jacs.0c03949. Epub 2020 Jun 10.

Abstract

Crystalline metal-organic frameworks (MOFs) can assemble chromophoric molecules into a wide range of spatial arrangements, which are controlled by the MOF topology. Like natural light-harvesting complexes (LHCs), the precise arrangement modulates interchromophoric interactions, in turn determining excitonic behavior and migration dynamics. To unveil the key factors that control efficient exciton displacements within MOFs, we first developed linkers with low electronic symmetry (as defined by large transition dipoles) and then assembled them into MOFs. These linkers possess extended conjugation along one molecular axis, engendering low optical bandgaps and improved oscillator strength for their lowest-energy transition (S → S). This enhances absorption-emission spectral overlap and boosts the efficiency of Förster resonance energy transfer, which was observed experimentally by a sizable decrease in emission quantum yield (QY), accompanied by a faster population decay profile. We find that MOFs that orient these elongated linkers along their asymmetric pore channel, e.g., the hexagonal pores in an network, manifested >50% decrease in their emission QY with faster decay profiles relative to their corresponding solution dissolved linkers. This is due to an efficient migration of photogenerated excitons at the crystallite peripheral sites to internal sites, which was facilitated by polarized absorption-emission overlap among the parallelly aligned linkers. In contrast, symmetric MOFs, such as those with topological net, orient elongated linkers along two perpendicular crystal axes, which hinders efficient exciton migration. The present study underscores that MOFs are promising to develop artificial LHCs, but that to achieve an efficient exciton displacement, appropriate topology-guided assembly is required to fully realize the true potential of linkers with low electronic symmetry.

摘要

晶态金属有机骨架 (MOFs) 可以将发色团分子组装成各种空间排列,而这种排列是由 MOF 的拓扑结构控制的。与天然的光捕获复合物 (LHCs) 一样,精确的排列可以调节发色团之间的相互作用,从而决定激子行为和迁移动力学。为了揭示控制 MOFs 内高效激子位移的关键因素,我们首先开发了具有低电子对称性(由大跃迁偶极子定义)的连接体,然后将它们组装成 MOFs。这些连接体在一个分子轴上具有扩展的共轭,从而产生低的光学带隙和增强的最低能量跃迁(S → S)的振子强度。这增强了吸收-发射光谱的重叠,并提高了Förster 共振能量转移的效率,这通过发射量子产率 (QY) 的显著降低以及更快的种群衰减谱得到了实验证实。我们发现,这些沿其不对称孔道排列的拉长连接体的 MOFs,例如 网络中的六边形孔,与相应的溶液溶解连接体相比,其发射 QY 下降超过 50%,衰减谱更快。这是由于在晶面外围位点和内部位点之间有效地迁移了光生激子,这是由平行排列的连接体之间的极化吸收-发射重叠促进的。相比之下,对称的 MOFs,如具有 拓扑结构的 MOFs,将拉长的连接体沿两个相互垂直的晶体轴排列,这阻碍了激子的有效迁移。本研究强调,MOFs 是开发人工 LHCs 的有前途的材料,但为了实现高效激子位移,需要适当的拓扑引导组装,以充分实现低电子对称性连接体的真正潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验