Mukhopadhyay Subhabrata, Shimoni Ran, Liberman Itamar, Ifraemov Raya, Rozenberg Illya, Hod Idan
Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel.
Angew Chem Int Ed Engl. 2021 Jun 7;60(24):13423-13429. doi: 10.1002/anie.202102320. Epub 2021 May 5.
Electrochemically active Metal-Organic Frameworks (MOFs) have been progressively recognized for their use in solar fuel production schemes. Typically, they are utilized as platforms for heterogeneous tethering of exceptionally large concentration of molecular electrocatalysts onto electrodes. Yet so far, the potential influence of their extraordinary chemical modularity on electrocatalysis has been overlooked. Herein, we demonstrate that, when assembled on a solid Ag CO reduction electrocatalyst, a non-catalytic UiO-66 MOF acts as a porous membrane that systematically tunes the active site's immediate chemical environment, leading to a drastic enhancement of electrocatalytic activity and selectivity. Electrochemical analysis shows that the MOF membrane improves catalytic performance through physical and electrostatic regulation of reactants delivery towards the catalytic sites. The MOF also stabilizes catalytic intermediates via modulation of active site's secondary coordination sphere. This concept can be expanded to a wide range of proton-coupled electrochemical reactions, providing new means for precise, molecular-level manipulation of heterogeneous solar fuels systems.
具有电化学活性的金属有机框架材料(MOFs)在太阳能燃料生产方案中的应用已逐渐得到认可。通常,它们被用作将极高浓度的分子电催化剂非均相 tethering 到电极上的平台。然而,迄今为止,其非凡的化学模块性对电催化的潜在影响一直被忽视。在此,我们证明,当组装在固体 Ag CO 还原电催化剂上时,非催化性的 UiO - 66 MOF 充当多孔膜,系统地调节活性位点的直接化学环境,从而导致电催化活性和选择性的大幅提高。电化学分析表明,MOF 膜通过对反应物向催化位点的输送进行物理和静电调节来提高催化性能。MOF 还通过调节活性位点的二级配位层来稳定催化中间体。这一概念可扩展到广泛的质子耦合电化学反应,为非均相太阳能燃料系统的精确分子水平操纵提供了新方法。