Marakhova I I, Vinogradova T A, Efimova E V
Tsitologiia. 1988 Oct;30(10):1208-17.
The stimulation of DNA synthesis by serum is accompanied by early (30 minutes) and late (2-8 hours) increase in ouabain-sensitive rubidium (potassium) influx and the elevation of intracellular potassium content from 0.5-0.6 to 0.7-0.8 mmole per gram protein in CHO-K1 cells. Isoproterenol alone induces the transient increase both in potassium influx via Na,K-ATPase and in potassium efflux without any effect on intracellular potassium content and cell proliferation. Isoproterenol acts synergistically with serum in eliciting the early and late changes in potassium transport and in stimulating G1----S transition. The combination of serum and theophylline produces a rapid increase in potassium influx, however, it does not stimulate DNA synthesis and does not induce any later increase in intracellular potassium content. It is concluded that early and late activation of Na,K-ATPase by mitogens can be dissociated; the Na,K-ATPase activation is involved in mitogenic response when producing the sustained potassium influx and the elevation of intracellular potassium content during G1----S transition.