Suppr超能文献

仿生纳米酶/喜树碱杂化系统协同增强放射治疗。

A biomimetic nanozyme/camptothecin hybrid system for synergistically enhanced radiotherapy.

机构信息

Department of Electronic Science and Technology, School of Physics and Technology, Wuhan University, Wuhan 430072, China.

Joint Laboratory of Nanozymes in Zhengzhou University, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, China.

出版信息

J Mater Chem B. 2020 Jun 24;8(24):5312-5319. doi: 10.1039/d0tb00676a.

Abstract

Although radiotherapy (RT) has been an effective therapeutic regimen against most solid tumors, its effect is limited by the hypoxic tumor microenvironment and radio-tolerance of tumor cells to a large extent. Here we have designed a biomimetic nanozyme/camptothecin hybrid system for synergistically enhanced radiotherapy, which consists of an internal camptothecin (CPT)-loaded hollow MnO2 core and an external tumor cell membrane. The tumor cell membrane endows the system with excellent tumor targeting ability. The hollow MnO2 core can deliver the hydrophobic drug CPT and catalyze the production of oxygen from hydrogen peroxide in tumor tissues, which was finally degraded into Mn2+, a T1-weighted contrast agent. The anti-tumor mechanism of this system includes two aspects: (i) the generated oxygen can improve the hypoxic state of the tumor microenvironment and enhance the radiotherapy sensitivity and (ii) CPT can induce cell cycle arrest in the S-phase at a low dose, which further increases the radio-sensitivity of tumor cells and augmented radiation-induced tumor damage. The results of in vivo experiments showed that the biomimetic nanozyme drug delivery system improved the hypoxic microenvironment of the tumor tissue with a high tumor inhibition rate in a murine model. This platform achieved synergistic radiotherapy sensitization and provided a novel idea for the design of a radiotherapy sensitization system.

摘要

虽然放射疗法(RT)已成为治疗大多数实体瘤的有效治疗方案,但它的效果在很大程度上受到肿瘤缺氧微环境和肿瘤细胞放射耐受性的限制。在这里,我们设计了一种仿生纳米酶/喜树碱杂化系统,用于协同增强放射治疗,该系统由内部载有喜树碱(CPT)的中空 MnO2 核和外部肿瘤细胞膜组成。肿瘤细胞膜赋予该系统优异的肿瘤靶向能力。中空 MnO2 核可以递送疏水性药物 CPT,并在肿瘤组织中催化过氧化氢产生氧气,最终被降解为 Mn2+,一种 T1 加权造影剂。该系统的抗肿瘤机制包括两个方面:(i)产生的氧气可以改善肿瘤微环境的缺氧状态,增强放射治疗的敏感性;(ii)CPT 可以在低剂量下诱导细胞周期停滞在 S 期,从而进一步增加肿瘤细胞的放射敏感性,并增强辐射诱导的肿瘤损伤。体内实验结果表明,仿生纳米酶药物递送系统改善了肿瘤组织的缺氧微环境,在小鼠模型中实现了高肿瘤抑制率。该平台实现了放射治疗增敏的协同作用,为放射治疗增敏系统的设计提供了新的思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验