文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

工程化细胞膜包覆的催化剂作为多功能人工过氧化物酶体在生物医学中的应用。

Engineering Cell Membrane-Cloaked Catalysts as Multifaceted Artificial Peroxisomes for Biomedical Applications.

机构信息

Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Med-X Center for Materials, Sichuan University, Chengdu, 610041, China.

Department of Ultrasound, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.

出版信息

Adv Sci (Weinh). 2023 Jun;10(17):e2206181. doi: 10.1002/advs.202206181. Epub 2023 Apr 25.


DOI:10.1002/advs.202206181
PMID:37096840
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10265064/
Abstract

Artificial peroxisomes (APEXs) or peroxisome mimics have caught a lot of attention in nanomedicine and biomaterial science in the last decade, which have great potential in clinically diagnosing and treating diseases. APEXs are typically constructed from a semipermeable membrane that encloses natural enzymes or enzyme-mimetic catalysts to perform peroxisome-/enzyme-mimetic activities. The recent rapid progress regarding their biocatalytic stability, adjustable activity, and surface functionality has significantly promoted APEXs systems in real-life applications. In addition, developing a facile and versatile system that can simulate multiple biocatalytic tasks is advantageous. Here, the recent advances in engineering cell membrane-cloaked catalysts as multifaceted APEXs for diverse biomedical applications are highlighted and commented. First, various catalysts with single or multiple enzyme activities have been introduced as cores of APEXs. Subsequently, the extraction and function of cell membranes that are used as the shell are summarized. After that, the applications of these APEXs are discussed in detail, such as cancer therapy, antioxidant, anti-inflammation, and neuron protection. Finally, the future perspectives and challenges of APEXs are proposed and outlined. This progress review is anticipated to provide new and unique insights into cell membrane-cloaked catalysts and to offer significant new inspiration for designing future artificial organelles.

摘要

人工过氧化物酶体 (APEXs) 或过氧化物酶模拟物在过去十年中引起了纳米医学和生物材料科学领域的广泛关注,它们在临床诊断和治疗疾病方面具有巨大的潜力。APEXs 通常由半透膜构建而成,其中包含天然酶或酶模拟催化剂,以发挥过氧化物酶/酶模拟活性。最近,其生物催化稳定性、可调活性和表面功能的快速发展显著推动了 APEXs 系统在实际应用中的发展。此外,开发一种能够模拟多种生物催化任务的简便多功能系统是有利的。在这里,重点介绍和评论了近年来工程细胞膜包裹催化剂作为多功能 APEXs 在多种生物医学应用中的进展。首先,介绍了具有单一或多种酶活性的各种催化剂作为 APEXs 的核心。随后,总结了用作外壳的细胞膜的提取和功能。之后,详细讨论了这些 APEXs 在癌症治疗、抗氧化、抗炎和神经元保护等方面的应用。最后,提出并概述了 APEXs 的未来展望和挑战。预计本综述将为细胞膜包裹催化剂提供新的独特见解,并为设计未来的人工细胞器提供重要的新灵感。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d9a/10265064/44938f632c8d/ADVS-10-2206181-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d9a/10265064/c5b88365057a/ADVS-10-2206181-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d9a/10265064/3d4ac54320ea/ADVS-10-2206181-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d9a/10265064/2d2989eca028/ADVS-10-2206181-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d9a/10265064/0ae873ef15c4/ADVS-10-2206181-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d9a/10265064/11ae49973fd0/ADVS-10-2206181-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d9a/10265064/ef4e357dff74/ADVS-10-2206181-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d9a/10265064/420add95e99d/ADVS-10-2206181-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d9a/10265064/bde00d5a9241/ADVS-10-2206181-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d9a/10265064/01a6ca4e8003/ADVS-10-2206181-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d9a/10265064/510ff185f1de/ADVS-10-2206181-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d9a/10265064/892d32f1df6e/ADVS-10-2206181-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d9a/10265064/474ce38b2b71/ADVS-10-2206181-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d9a/10265064/4d352107bb17/ADVS-10-2206181-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d9a/10265064/674fe5f2e1f4/ADVS-10-2206181-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d9a/10265064/31c3c4e10550/ADVS-10-2206181-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d9a/10265064/ae1ffdda3d16/ADVS-10-2206181-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d9a/10265064/dda536bd8812/ADVS-10-2206181-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d9a/10265064/910ba18cdc01/ADVS-10-2206181-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d9a/10265064/44938f632c8d/ADVS-10-2206181-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d9a/10265064/c5b88365057a/ADVS-10-2206181-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d9a/10265064/3d4ac54320ea/ADVS-10-2206181-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d9a/10265064/2d2989eca028/ADVS-10-2206181-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d9a/10265064/0ae873ef15c4/ADVS-10-2206181-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d9a/10265064/11ae49973fd0/ADVS-10-2206181-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d9a/10265064/ef4e357dff74/ADVS-10-2206181-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d9a/10265064/420add95e99d/ADVS-10-2206181-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d9a/10265064/bde00d5a9241/ADVS-10-2206181-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d9a/10265064/01a6ca4e8003/ADVS-10-2206181-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d9a/10265064/510ff185f1de/ADVS-10-2206181-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d9a/10265064/892d32f1df6e/ADVS-10-2206181-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d9a/10265064/474ce38b2b71/ADVS-10-2206181-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d9a/10265064/4d352107bb17/ADVS-10-2206181-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d9a/10265064/674fe5f2e1f4/ADVS-10-2206181-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d9a/10265064/31c3c4e10550/ADVS-10-2206181-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d9a/10265064/ae1ffdda3d16/ADVS-10-2206181-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d9a/10265064/dda536bd8812/ADVS-10-2206181-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d9a/10265064/910ba18cdc01/ADVS-10-2206181-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d9a/10265064/44938f632c8d/ADVS-10-2206181-g004.jpg

相似文献

[1]
Engineering Cell Membrane-Cloaked Catalysts as Multifaceted Artificial Peroxisomes for Biomedical Applications.

Adv Sci (Weinh). 2023-6

[2]
Recent Advances of Membrane-Cloaked Nanoplatforms for Biomedical Applications.

Bioconjug Chem. 2018-3-20

[3]
Engineering single-atom catalysts toward biomedical applications.

Chem Soc Rev. 2022-5-10

[4]
Metal-Organic-Framework-Engineered Enzyme-Mimetic Catalysts.

Adv Mater. 2020-12

[5]
Aiding nature's organelles: artificial peroxisomes play their role.

Nano Lett. 2013-5-9

[6]
Advances in antitumor application of ROS enzyme-mimetic catalysts.

Nanoscale. 2024-7-4

[7]
Catalytic Nanomaterials toward Atomic Levels for Biomedical Applications: From Metal Clusters to Single-Atom Catalysts.

ACS Nano. 2021-2-23

[8]
Which is Better for Nanomedicines: Nanocatalysts or Single-Atom Catalysts?

Adv Healthc Mater. 2021-4

[9]
Enzyme-Laden Bioactive Hydrogel for Biocatalytic Monitoring and Regulation.

Acc Chem Res. 2021-3-2

[10]
Emerging Single-Atom Catalysts/Nanozymes for Catalytic Biomedical Applications.

Adv Healthc Mater. 2022-3

引用本文的文献

[1]
Environmental acclimatization of the relatively high latitude scleractinian coral Pavona decussata: integrative perspectives on seasonal subaerial exposure and temperature fluctuations.

BMC Genomics. 2025-5-14

[2]
[Experimental Study on Biomimetic Curcumin-Mediated Sonodynamic Therapy of Melanoma].

Sichuan Da Xue Xue Bao Yi Xue Ban. 2024-9-20

[3]
Chemodynamic PtMn Nanocubes for Effective Photothermal ROS Storm a Key Anti-Tumor Therapy in-vivo.

Int J Nanomedicine. 2024

[4]
Dual regulation of osteosarcoma hypoxia microenvironment by a bioinspired oxygen nanogenerator for precise single-laser synergistic photodynamic/photothermal/induced antitumor immunity therapy.

Mater Today Bio. 2024-4-13

[5]
Burgeoning Single-Atom Nanozymes for Efficient Bacterial Elimination.

Nanomaterials (Basel). 2023-10-14

本文引用的文献

[1]
Enhanced Peroxidase-like Activity of CuS Hollow Nanocages by Plasmon-Induced Hot Carriers and Photothermal Effect for the Dual-Mode Detection of Tannic Acid.

ACS Appl Mater Interfaces. 2022-9-7

[2]
Catalase-Like Nanozymes: Classification, Catalytic Mechanisms, and Their Applications.

Small. 2022-9

[3]
Polymeric particle-based therapies for acute inflammatory diseases.

Nat Rev Mater. 2022

[4]
Engineered biomimetic nanoparticles achieve targeted delivery and efficient metabolism-based synergistic therapy against glioblastoma.

Nat Commun. 2022-7-21

[5]
Functional Immune Cell-Derived Exosomes Engineered for the Trilogy of Radiotherapy Sensitization.

Adv Sci (Weinh). 2022-8

[6]
A single-atom library for guided monometallic and concentration-complex multimetallic designs.

Nat Mater. 2022-6

[7]
Engineered PD-1/TIGIT dual-activating cell-membrane nanoparticles with dexamethasone act synergistically to shape the effector T cell/Treg balance and alleviate systemic lupus erythematosus.

Biomaterials. 2022-6

[8]
A biomimetic nanocomposite with enzyme-like activities and CXCR4 antagonism efficiently enhances the therapeutic efficacy of acute myeloid leukemia.

Bioact Mater. 2022-3-31

[9]
Spiky Cascade Biocatalysts as Peroxisome-Mimics for Ultrasound-Augmented Tumor Ablation.

ACS Appl Mater Interfaces. 2022-4-13

[10]
Microenvironment-driven sequential ferroptosis, photodynamic therapy, and chemotherapy for targeted breast cancer therapy by a cancer-cell-membrane-coated nanoscale metal-organic framework.

Biomaterials. 2022-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索