Suppr超能文献

使用具有残差分析的自回归动态条件相关模型来提取动态功能连接性。

Using autoregressive-dynamic conditional correlation model with residual analysis to extract dynamic functional connectivity.

作者信息

Hakimdavoodi Hamidreza, Amirmazlaghani Maryam

机构信息

Department of Computer Engineering, Amirkabir University of Technology, Tehran, Iran.

出版信息

J Neural Eng. 2020 Jun 25;17(3):035008. doi: 10.1088/1741-2552/ab965b.

Abstract

OBJECTIVE

Statistical methods that simultaneously model temporal and spatial variations of fMRI data are promising tools for dynamic functional connectivity (FC) estimation. Although different approaches are available, they need to manually set the parameters, or may disregard some important fMRI features such as the autocorrelation. In addition, no reliable method exists for the validation of dynamic FC analysis models.

APPROACH

In the present study, we have proposed an autoregressive dynamic conditional correlation model to deal with the temporal autocorrelation and non-stationarity in fMRI time-series. This model assumes that the brain time courses follow a multivariate Gaussian distribution, and that the conditional mean, variance and covariances change in an autoregressive form. Also, we proposed a new measurement index for the evaluation of the statistical consistency between the inferred dynamic functional connectivity and the real fMRI data. The performance of our model was tested in both simulated and real fMRI data.

MAIN RESULTS

The model was associated with independent Gaussian residuals, and identified the dynamic connectivity patterns with high precision. Applying the model to the fMRI data from typically developing and attention deficit hyperactivity disorder subjects, brain connectivities were significantly different between the two groups.

SIGNIFICANCE

Prominent features of our model were the consideration of the fMRI autocorrelation, no need to adjust the window length, and also elimination of the variance changes in each brain time-course from its connectivity changes.

摘要

目的

同时对功能磁共振成像(fMRI)数据的时间和空间变化进行建模的统计方法,是用于动态功能连接(FC)估计的有前景的工具。尽管有不同的方法可用,但它们需要手动设置参数,或者可能会忽略一些重要的fMRI特征,如自相关性。此外,不存在用于验证动态FC分析模型的可靠方法。

方法

在本研究中,我们提出了一种自回归动态条件相关模型,以处理fMRI时间序列中的时间自相关性和非平稳性。该模型假设大脑时间进程遵循多元高斯分布,并且条件均值、方差和协方差以自回归形式变化。此外,我们提出了一种新的测量指标,用于评估推断的动态功能连接与真实fMRI数据之间的统计一致性。我们的模型在模拟和真实fMRI数据中都进行了测试。

主要结果

该模型与独立的高斯残差相关联,并高精度地识别出动态连接模式。将该模型应用于来自典型发育和注意力缺陷多动障碍受试者的fMRI数据,两组之间的脑连接性存在显著差异。

意义

我们模型的突出特点是考虑了fMRI自相关性,无需调整窗口长度,并且还从其连接性变化中消除了每个脑时间进程中的方差变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验