Addabbo Rayna M, Dalphin Matthew D, Mecha Miranda F, Liu Yue, Staikos Alexios, Guzman-Luna Valeria, Cavagnero Silvia
Biophysics Graduate Degree Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.
Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.
J Phys Chem B. 2020 Jul 30;124(30):6488-6507. doi: 10.1021/acs.jpcb.0c03039. Epub 2020 Jun 9.
The relation between co- and post-translational protein folding and aggregation in the cell is poorly understood. Here, we employ a combination of fluorescence anisotropy decays in the frequency domain, fluorescence-detected solubility assays, and NMR spectroscopy to explore the role of the ribosome in protein folding within a biologically relevant context. First, we find that a primary function of the ribosome is to promote cotranslational nascent-protein solubility, thus supporting cotranslational folding even in the absence of molecular chaperones. Under these conditions, however, only a fraction of the soluble expressed protein is folded and freely tumbling in solution. Hence, the ribosome alone is insufficient to guarantee quantitative formation of the native state of the apomyoglobin (apoMb) model protein. Right after biosynthesis, nascent chains encoding apoMb emerge from the ribosomal exit tunnel and undergo a crucial irreversible post-translational kinetic partitioning between further folding and aggregation. Mutational analysis in combination with protein-expression kinetics and NMR show that nascent proteins can attain their native state only when the relative rates of soluble and insoluble product formation immediately upon release from the ribosome are tilted in favor of soluble species. Finally, the outcome of the above immediately post-translational kinetic partitioning is much more sensitive to amino acid sequence perturbations than the native fold, which is rather mutation-insensitive. Hence, kinetic channeling of nascent-protein conformation upon release from the ribosome may be a major determinant of evolutionary pressure.
细胞内共翻译和翻译后蛋白质折叠与聚集之间的关系目前还知之甚少。在这里,我们结合频域荧光各向异性衰减、荧光检测溶解度测定和核磁共振光谱等方法,在生物学相关背景下探索核糖体在蛋白质折叠中的作用。首先,我们发现核糖体的一个主要功能是促进共翻译新生蛋白质的溶解性,从而即使在没有分子伴侣的情况下也能支持共翻译折叠。然而,在这些条件下,只有一部分可溶性表达蛋白在溶液中折叠并自由翻滚。因此,仅核糖体不足以保证脱辅基肌红蛋白(apoMb)模型蛋白天然状态的定量形成。生物合成后,编码apoMb的新生链从核糖体出口通道出现,并在进一步折叠和聚集之间经历关键的不可逆翻译后动力学分配。结合蛋白质表达动力学和核磁共振的突变分析表明,只有当新生蛋白质从核糖体释放后立即形成可溶性和不溶性产物的相对速率偏向于可溶性物种时,它们才能达到天然状态。最后,上述翻译后立即发生的动力学分配的结果比天然折叠对氨基酸序列扰动更为敏感,而天然折叠对突变不太敏感。因此,新生蛋白质从核糖体释放后构象的动力学导向可能是进化压力的一个主要决定因素。