Suppr超能文献

鉴定与乳腺癌预后相关的候选基因。

Identification of Candidate Genes Associated with Breast Cancer Prognosis.

机构信息

Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.

Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China.

出版信息

DNA Cell Biol. 2020 Jul;39(7):1205-1227. doi: 10.1089/dna.2020.5482. Epub 2020 May 22.

Abstract

Breast cancer (BC) is the most malignant tumor in women. The molecular mechanisms underlying tumorigenesis still need to be further elucidated. It is necessary to investigate novel candidate genes involved in breast cancer progression and prognosis. In this study, we commit to explore candidate genes that associate with prognosis and therapy in BC by a comprehensive bioinformatic analysis. Four GEO datasets (GSE5764, GSE7904, GSE20711, and GSE29431) and the BC-related transcriptome data in TCGA database were downloaded and used to identify the differently expressed genes (DEGs). The function of DEGs was analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analysis. The protein-protein interaction (PPI) network of DEGs was constructed to identify hub genes. Prognostic candidate genes were identified through survival analysis. In addition, potential therapeutic targets were identified by constructed gene-drug interaction network through Comparative Toxicogenomics Database. A total of 547 DEGs (302 up and 245 down) were identified. Three core-subnetwork and 25 hub genes were identified in PPI network. Seven genes (namely , , , , , , and ) were identified as crucial prognostic candidate genes, which significantly associated with breast cancer overall survival. Furthermore, two representative candidate genes ( and ) were optionally chosen for verification by reverse transcription and quantitative real-time polymerase chain reaction (RT-PCR). What's more, the gene-drugs interaction analysis indicates several antitumor drugs that could affect the expression of these prognostic markers, such as doxorubicin, cisplatin, and tamoxifen. These results identified seven crucial candidate genes that may serve as prognosis biomarkers and novel therapeutic targets of breast cancer, which may facilitate further understanding the molecular pathogenesis and providing potential therapeutic strategies for BC.

摘要

乳腺癌(BC)是女性中最恶性的肿瘤。肿瘤发生的分子机制仍需要进一步阐明。有必要研究涉及乳腺癌进展和预后的新的候选基因。在这项研究中,我们致力于通过全面的生物信息学分析来探索与 BC 预后和治疗相关的候选基因。下载了四个 GEO 数据集(GSE5764、GSE7904、GSE20711 和 GSE29431)和 TCGA 数据库中与 BC 相关的转录组数据,用于鉴定差异表达基因(DEGs)。通过基因本体论(GO)和京都基因与基因组百科全书(KEGG)途径富集分析对 DEGs 的功能进行分析。构建 DEGs 的蛋白质-蛋白质相互作用(PPI)网络以识别枢纽基因。通过生存分析鉴定预后候选基因。此外,通过比较毒理学基因组数据库构建基因-药物相互作用网络来识别潜在的治疗靶点。共鉴定出 547 个 DEGs(302 个上调和 245 个下调)。在 PPI 网络中鉴定出 3 个核心子网和 25 个枢纽基因。七个基因(即、、、、、和)被鉴定为关键的预后候选基因,它们与乳腺癌总生存率显著相关。此外,通过逆转录和定量实时聚合酶链反应(RT-PCR)任选选择了两个代表性候选基因(和)进行验证。更重要的是,基因-药物相互作用分析表明,几种抗肿瘤药物可能会影响这些预后标志物的表达,如阿霉素、顺铂和他莫昔芬。这些结果确定了七个关键的候选基因,它们可能作为乳腺癌的预后生物标志物和新的治疗靶点,这可能有助于进一步了解分子发病机制,并为 BC 提供潜在的治疗策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验