Suppr超能文献

细胞大小的限制控制着蛋白质波的产生和稳定性,从而实现细胞内的时空调节。

Cell-sized confinement controls generation and stability of a protein wave for spatiotemporal regulation in cells.

机构信息

Department of Biosciences and Informatics, Keio University, Yokohama, Japan.

Mathematical Science Group, WPI Advanced Institute for Materials Research (WPI-AIMR), Tohoku University Katahira, Sendai, Japan.

出版信息

Elife. 2019 Jul 30;8:e44591. doi: 10.7554/eLife.44591.

Abstract

The Min system, a system that determines the bacterial cell division plane, uses changes in the localization of proteins (a Min wave) that emerges by reaction-diffusion coupling. Although previous studies have shown that space sizes and boundaries modulate the shape and speed of Min waves, their effects on wave emergence were still elusive. Here, by using a microsized fully confined space to mimic live cells, we revealed that confinement changes the conditions for the emergence of Min waves. In the microsized space, an increased surface-to-volume ratio changed the localization efficiency of proteins on membranes, and therefore, suppression of the localization change was necessary for the stable generation of Min waves. Furthermore, we showed that the cell-sized space strictly limits parameters for wave emergence because confinement inhibits both the instability and excitability of the system. These results show that confinement of reaction-diffusion systems has the potential to control spatiotemporal patterns in live cells.

摘要

Min 系统是一种决定细菌细胞分裂平面的系统,它利用通过反应扩散偶联产生的蛋白质(Min 波)的定位变化。尽管先前的研究表明,空间大小和边界调节 Min 波的形状和速度,但它们对波的出现的影响仍然难以捉摸。在这里,我们通过使用微尺寸的全限制空间来模拟活细胞,揭示了限制改变了 Min 波出现的条件。在微尺寸空间中,表面积与体积比的增加改变了膜上蛋白质的定位效率,因此,抑制蛋白质定位的改变对于 Min 波的稳定产生是必要的。此外,我们表明细胞大小的空间严格限制了波出现的参数,因为限制抑制了系统的不稳定性和兴奋性。这些结果表明,反应扩散系统的限制有可能控制活细胞中的时空模式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验