文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

杂交磁性纳米载体通过溶酶体膜通透性增加和化疗的协同作用促进胶质母细胞瘤的选择性细胞死亡。

Hybrid Magnetic Nanovectors Promote Selective Glioblastoma Cell Death through a Combined Effect of Lysosomal Membrane Permeabilization and Chemotherapy.

机构信息

Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.

Scuola Superiore Sant'Anna, The Biorobotics Institute, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.

出版信息

ACS Appl Mater Interfaces. 2020 Jul 1;12(26):29037-29055. doi: 10.1021/acsami.0c05556. Epub 2020 Jun 8.


DOI:10.1021/acsami.0c05556
PMID:32459082
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7343532/
Abstract

Glioblastoma multiforme is the most aggressive brain tumor, due to its high invasiveness and genetic heterogeneity. Moreover, the blood-brain barrier prevents many drugs from reaching a therapeutic concentration at the tumor site, and most of the chemotherapeutics lack in specificity toward cancer cells, accumulating in both healthy and diseased tissues, with severe side effects. Here, we present in vitro investigations on lipid-based nanovectors encapsulating a drug, nutlin-3a, and superparamagnetic iron oxide nanoparticles, to combine the proapoptotic action of the drug and the hyperthermia mediated by superparamagnetic iron oxide nanoparticles stimulated with an alternating magnetic field. The nanovectors are functionalized with the peptide angiopep-2 to induce receptor-mediated transcytosis through the blood-brain barrier and to target a receptor overexpressed by glioma cells. The glioblastoma multiforme targeting efficiency and the blood-brain barrier crossing abilities were tested through in vitro fluidic models, where different human cell lines were placed to mimic the tumor microenvironment. These nanovectors successfully cross the blood-brain barrier model, maintaining their targeting abilities for glioblastoma multiforme with minimal interaction with healthy cells. Moreover, we showed that nanovector-assisted hyperthermia induces a lysosomal membrane permeabilization that not only initiates a caspase-dependent apoptotic pathway, but also enhances the anticancer efficacy of the drug.

摘要

多形性胶质母细胞瘤是最具侵袭性的脑肿瘤,因其高度侵袭性和遗传异质性。此外,血脑屏障阻止了许多药物达到肿瘤部位的治疗浓度,而且大多数化疗药物对癌细胞缺乏特异性,在健康和患病组织中积累,具有严重的副作用。在这里,我们对包封药物 nutlin-3a 和超顺磁性氧化铁纳米粒子的基于脂质的纳米载体进行了体外研究,以结合药物的促凋亡作用和超顺磁性氧化铁纳米粒子在交变磁场刺激下的热疗。纳米载体用肽血管生成素-2 进行功能化,以诱导通过血脑屏障的受体介导的转胞吞作用,并靶向由神经胶质瘤细胞过表达的受体。通过体外流体模型测试了多形性胶质母细胞瘤的靶向效率和血脑屏障穿透能力,其中放置了不同的人细胞系来模拟肿瘤微环境。这些纳米载体成功地穿过血脑屏障模型,保持对多形性胶质母细胞瘤的靶向能力,与健康细胞的相互作用最小。此外,我们表明,纳米载体辅助热疗诱导溶酶体膜通透性,不仅引发 caspase 依赖性凋亡途径,而且还增强了药物的抗癌功效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a9c/7347249/f9f4a104af07/am0c05556_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a9c/7347249/fae9b3d4780d/am0c05556_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a9c/7347249/a4a7e606d5d3/am0c05556_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a9c/7347249/19e8ba838fcf/am0c05556_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a9c/7347249/de742fd4f3a2/am0c05556_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a9c/7347249/be5b8cec1421/am0c05556_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a9c/7347249/a116b1e56a7f/am0c05556_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a9c/7347249/5d275a2c41bf/am0c05556_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a9c/7347249/77ea472548b0/am0c05556_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a9c/7347249/b36e26fb6b41/am0c05556_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a9c/7347249/071427c73d7a/am0c05556_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a9c/7347249/13623379a6da/am0c05556_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a9c/7347249/f9f4a104af07/am0c05556_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a9c/7347249/fae9b3d4780d/am0c05556_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a9c/7347249/a4a7e606d5d3/am0c05556_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a9c/7347249/19e8ba838fcf/am0c05556_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a9c/7347249/de742fd4f3a2/am0c05556_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a9c/7347249/be5b8cec1421/am0c05556_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a9c/7347249/a116b1e56a7f/am0c05556_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a9c/7347249/5d275a2c41bf/am0c05556_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a9c/7347249/77ea472548b0/am0c05556_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a9c/7347249/b36e26fb6b41/am0c05556_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a9c/7347249/071427c73d7a/am0c05556_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a9c/7347249/13623379a6da/am0c05556_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a9c/7347249/f9f4a104af07/am0c05556_0004.jpg

相似文献

[1]
Hybrid Magnetic Nanovectors Promote Selective Glioblastoma Cell Death through a Combined Effect of Lysosomal Membrane Permeabilization and Chemotherapy.

ACS Appl Mater Interfaces. 2020-7-1

[2]
Nutlin-loaded magnetic solid lipid nanoparticles for targeted glioblastoma treatment.

Nanomedicine (Lond). 2018-12-21

[3]
Stimuli-responsive lipid-based magnetic nanovectors increase apoptosis in glioblastoma cells through synergic intracellular hyperthermia and chemotherapy.

Nanoscale. 2018-12-20

[4]
Ultrasound-responsive nutlin-loaded nanoparticles for combined chemotherapy and piezoelectric treatment of glioblastoma cells.

Acta Biomater. 2022-2

[5]
A Novel Patient-Personalized Nanovector Based on Homotypic Recognition and Magnetic Hyperthermia for an Efficient Treatment of Glioblastoma Multiforme.

Adv Healthc Mater. 2023-7

[6]
A Combined Approach Employing Chlorotoxin-Nanovectors and Low Dose Radiation To Reach Infiltrating Tumor Niches in Glioblastoma.

ACS Nano. 2016-2-23

[7]
Multifunctional temozolomide-loaded lipid superparamagnetic nanovectors: dual targeting and disintegration of glioblastoma spheroids by synergic chemotherapy and hyperthermia treatment.

Nanoscale. 2019-10-30

[8]
Dual-targeting and excretable ultrasmall SPIONs for T-weighted positive MR imaging of intracranial glioblastoma cells by targeting the lipoprotein receptor-related protein.

J Mater Chem B. 2020-3-18

[9]
Therapeutic evaluation of magnetic hyperthermia using Fe3O4-aminosilane-coated iron oxide nanoparticles in glioblastoma animal model.

Einstein (Sao Paulo). 2019-8-1

[10]
Design of multifunctional peptide collaborated and docetaxel loaded lipid nanoparticles for antiglioma therapy.

Eur J Pharm Biopharm. 2018-9-20

引用本文的文献

[1]
Nanoparticles for Glioblastoma Treatment.

Pharmaceutics. 2025-5-23

[2]
Utilization of nanotechnology to surmount the blood-brain barrier in disorders of the central nervous system.

Mater Today Bio. 2025-1-4

[3]
Recent advancements and clinical aspects of engineered iron oxide nanoplatforms for magnetic hyperthermia-induced cancer therapy.

Mater Today Bio. 2024-11-28

[4]
Nanoparticles in CNS Therapeutics: Pioneering Drug Delivery Advancements.

Curr Pharm Des. 2025

[5]
Peptide-Hitchhiking for the Development of Nanosystems in Glioblastoma.

ACS Nano. 2024-7-2

[6]
Development and characterization of lipid nanocapsules loaded with iron oxide nanoparticles for magnetic targeting to the blood-brain barrier.

Drug Deliv Transl Res. 2024-12

[7]
Drug-Loaded Lipid Magnetic Nanoparticles for Combined Local Hyperthermia and Chemotherapy against Glioblastoma Multiforme.

ACS Nano. 2023-9-26

[8]
Magnetic self-assembly of 3D multicellular microscaffolds: A biomimetic brain tumor-on-a-chip for drug delivery and selectivity testing.

APL Bioeng. 2023-7-24

[9]
Cell-Membrane-Coated and Cell-Penetrating Peptide-Conjugated Trimagnetic Nanoparticles for Targeted Magnetic Hyperthermia of Prostate Cancer Cells.

ACS Appl Mater Interfaces. 2023-6-28

[10]
Advanced Strategies for Overcoming Endosomal/Lysosomal Barrier in Nanodrug Delivery.

Research (Wash D C). 2023-5-24

本文引用的文献

[1]
Multifunctional temozolomide-loaded lipid superparamagnetic nanovectors: dual targeting and disintegration of glioblastoma spheroids by synergic chemotherapy and hyperthermia treatment.

Nanoscale. 2019-10-30

[2]
The Hsp70 chaperone network.

Nat Rev Mol Cell Biol. 2019-11

[3]
Ligand density on nanoparticles: A parameter with critical impact on nanomedicine.

Adv Drug Deliv Rev. 2019-5-31

[4]
Nanostructured carriers as innovative tools for cancer diagnosis and therapy.

APL Bioeng. 2019-3-26

[5]
'Relationship between thermal dose and cell death for "rapid" ablative and "slow" hyperthermic heating'.

Int J Hyperthermia. 2019-1-31

[6]
Nutlin-loaded magnetic solid lipid nanoparticles for targeted glioblastoma treatment.

Nanomedicine (Lond). 2018-12-21

[7]
Recent insights in magnetic hyperthermia: From the "hot-spot" effect for local delivery to combined magneto-photo-thermia using magneto-plasmonic hybrids.

Adv Drug Deliv Rev. 2018-11-7

[8]
Characterisation of particles in solution - a perspective on light scattering and comparative technologies.

Sci Technol Adv Mater. 2018-10-18

[9]
Stimuli-responsive lipid-based magnetic nanovectors increase apoptosis in glioblastoma cells through synergic intracellular hyperthermia and chemotherapy.

Nanoscale. 2018-12-20

[10]
Effect of flow on targeting and penetration of angiopep-decorated nanoparticles in a microfluidic model blood-brain barrier.

PLoS One. 2018-10-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索