Department of Physiology, National University of Singapore, Singapore 117597, Singapore.
Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117456, and.
J Neurosci. 2019 Jul 10;39(28):5452-5465. doi: 10.1523/JNEUROSCI.2876-18.2019. Epub 2019 May 13.
Sleep deprivation (SD) interferes with hippocampal structural and functional plasticity, formation of long-term memory and cognitive function. The molecular mechanisms underlying these effects are incompletely understood. Here, we show that SD impaired synaptic tagging and capture and behavioral tagging, two major mechanisms of associative learning and memory. Strikingly, mutant male mice lacking the p75 neurotrophin receptor (p75) were resistant to the detrimental effects of SD on hippocampal plasticity at both cellular and behavioral levels. Mechanistically, SD increased p75 expression and its interaction with phosphodiesterase. p75 deletion preserved hippocampal structural and functional plasticity by preventing SD-mediated effects on hippocampal cAMP-CREB-BDNF, cAMP-PKA-LIMK1-cofilin, and RhoA-ROCK2 pathways. Our study identifies p75 as an important mediator of hippocampal structural and functional changes associated with SD, and suggests that targeting p75 could be a promising strategy to limit the memory and cognitive deficits that accompany sleep loss. The lack of sufficient sleep is a major health concern in today's world. Sleep deprivation (SD) affects cognitive functions such as memory. We have investigated how associative memory mechanisms, synaptic tagging and capture (STC), was impaired in SD mice at cellular and behavioral level. Interestingly, mutant male mice that lacked the p75 neurotrophin receptor (p75) were seen to be resistant to the SD-induced impairments in hippocampal synaptic plasticity and STC. Additionally, we elucidated the molecular pathways responsible for this rescue of plasticity in the mutant mice. Our study has thus identified p75 as a promising target to limit the cognitive deficits associated with SD.
睡眠剥夺(SD)会干扰海马体的结构和功能可塑性、长时记忆的形成和认知功能。其潜在的分子机制尚不完全清楚。本研究表明,SD 破坏了联想学习和记忆的两个主要机制,即突触标记和捕获及行为标记。引人注目的是,缺乏 p75 神经生长因子受体(p75)的突变雄性小鼠在细胞和行为水平上均对 SD 对海马体可塑性的有害影响具有抗性。从机制上讲,SD 通过增加 p75 的表达及其与磷酸二酯酶的相互作用,从而破坏了海马体结构和功能的可塑性。p75 的缺失通过防止 SD 对海马体 cAMP-CREB-BDNF、cAMP-PKA-LIMK1-cofilin 和 RhoA-ROCK2 通路的影响,保留了海马体的结构和功能可塑性。本研究确定了 p75 是与 SD 相关的海马体结构和功能变化的重要介导物,并表明靶向 p75 可能是限制与睡眠剥夺相关的记忆和认知缺陷的有前途的策略。在当今世界,睡眠不足是一个主要的健康问题。睡眠剥夺(SD)会影响认知功能,例如记忆力。我们研究了在细胞和行为水平上,SD 如何损害联想记忆机制,即突触标记和捕获(STC)。有趣的是,缺乏 p75 神经生长因子受体(p75)的突变雄性小鼠对 SD 引起的海马体突触可塑性和 STC 损伤具有抗性。此外,我们阐明了负责突变小鼠可塑性恢复的分子途径。因此,我们的研究确定了 p75 作为限制与 SD 相关的认知缺陷的有希望的靶标。