Suppr超能文献

通过V掺杂和氧缺陷提高SrTaO钙钛矿氧化物的光催化效率

Improved photocatalytic efficiency of SrTaO perovskite oxide V doping and oxygen defects.

作者信息

Brach A, Zaari H, Benyoussef A, Bahmad L

机构信息

Laboratory of Condensed Matter and Interdisciplinary Sciences, Unité de Recherche Labellisée CNRST, URL-CNRST-17, Faculty of Sciences, Mohammed V University Rabat Morocco

Hassan II Academy of Science and Technology Rabat Morocco.

出版信息

RSC Adv. 2025 Aug 22;15(36):29822-29835. doi: 10.1039/d5ra04275e. eCollection 2025 Aug 18.

Abstract

Photocatalytic water splitting has emerged as a key approach to sustainable hydrogen production, yet many photocatalysts suffer from limited solar absorption and low conversion efficiency. In this study, we investigate the electronic, optical, and photocatalytic characteristics of SrTaO through density functional theory (DFT) calculations, utilizing the generalized gradient approximation (GGA) for the exchange-correlation potential. The findings show that SrTaO primarily absorbs ultraviolet (UV) light, which limits its photocatalytic activity to the UV range. To enhance its photocatalytic performance, we explore vanadium(v) doping in Tantalum (Ta) sites and the introduction of oxygen vacancies (OVs). The results demonstrate a significant improvement in photocatalytic performance, with hydrogen production rates increasing from 2.18 μmol g for pure SrTaO to 259.8 μmol g for V-doped SrTaO with oxygen defects. Furthermore, the quantum efficiency (QE) and solar-to-hydrogen (STH) conversion efficiency improve notably, with the STH efficiency reaching 17.1%. These modifications help overcome light-harvesting limitations and contribute valuable insights toward the development of more effective photocatalysts for solar-driven hydrogen production.

摘要

光催化水分解已成为可持续制氢的关键方法,但许多光催化剂存在太阳能吸收有限和转换效率低的问题。在本研究中,我们通过密度泛函理论(DFT)计算,利用广义梯度近似(GGA)处理交换关联势,研究了SrTaO的电子、光学和光催化特性。研究结果表明,SrTaO主要吸收紫外(UV)光,这将其光催化活性限制在紫外范围内。为了提高其光催化性能,我们探索了在钽(Ta)位点进行钒(V)掺杂以及引入氧空位(OVs)。结果表明,光催化性能有显著改善,产氢速率从纯SrTaO的2.18 μmol g提高到有氧缺陷的V掺杂SrTaO的259.8 μmol g。此外,量子效率(QE)和太阳能到氢能(STH)转换效率显著提高,STH效率达到17.1%。这些改性有助于克服光捕获限制,并为开发更有效的太阳能驱动制氢光催化剂提供有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f09/12376847/1642348eb7a6/d5ra04275e-f1.jpg

相似文献

1
Improved photocatalytic efficiency of SrTaO perovskite oxide V doping and oxygen defects.
RSC Adv. 2025 Aug 22;15(36):29822-29835. doi: 10.1039/d5ra04275e. eCollection 2025 Aug 18.
4
Boosting carrier separation over ultrathin g-CN by P doping for enhanced photocatalytic performance.
Nanoscale. 2025 Aug 15;17(32):18805-18821. doi: 10.1039/d5nr01002k.
7
Photocatalytic degradation of rhodamine B using zinc oxide/silver nanowire nanocomposite films under ultraviolet irradiation.
R Soc Open Sci. 2025 Jun 18;12(6):241967. doi: 10.1098/rsos.241967. eCollection 2025 Jun.
8
Intra-layer Na and inter-layer K doping synergistically enhance photocatalytic activity of g-CN.
J Colloid Interface Sci. 2025 Dec 15;700(Pt 3):138565. doi: 10.1016/j.jcis.2025.138565. Epub 2025 Jul 28.

本文引用的文献

1
Unveiling the Photocatalytic Potential of BiAgOS Solid Solution for Hydrogen Evolution Reaction.
Nanomaterials (Basel). 2024 Nov 22;14(23):1869. doi: 10.3390/nano14231869.
2
Photocatalysts for a sustainable future: Innovations in large-scale environmental and energy applications.
Sci Total Environ. 2023 Aug 10;885:163914. doi: 10.1016/j.scitotenv.2023.163914. Epub 2023 May 4.
3
Photocatalytic Properties of ZnO:Al/MAPbI3/Fe2O3 Heterostructure: First-Principles Calculations.
Int J Mol Sci. 2023 Mar 2;24(5):4856. doi: 10.3390/ijms24054856.
4
Challenges of modeling nanostructured materials for photocatalytic water splitting.
Chem Soc Rev. 2022 May 10;51(9):3794-3818. doi: 10.1039/d1cs00648g.
5
Photocatalytic water splitting with a quantum efficiency of almost unity.
Nature. 2020 May;581(7809):411-414. doi: 10.1038/s41586-020-2278-9. Epub 2020 May 27.
6
Lead-Halide Perovskites for Photocatalytic α-Alkylation of Aldehydes.
J Am Chem Soc. 2019 Jan 16;141(2):733-738. doi: 10.1021/jacs.8b08720. Epub 2019 Jan 8.
7
Global and Local Partitioning of the Charge Transferred in the Parr-Pearson Model.
J Phys Chem A. 2017 May 25;121(20):4019-4029. doi: 10.1021/acs.jpca.7b01765. Epub 2017 May 12.
8
MnPSe Monolayer: A Promising 2D Visible-Light Photohydrolytic Catalyst with High Carrier Mobility.
Adv Sci (Weinh). 2016 Apr 23;3(10):1600062. doi: 10.1002/advs.201600062. eCollection 2016 Oct.
10
Electronic doping and redox-potential tuning in colloidal semiconductor nanocrystals.
Acc Chem Res. 2015 Jul 21;48(7):1929-37. doi: 10.1021/acs.accounts.5b00181. Epub 2015 Jun 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验