Suppr超能文献

从(印度楝树)中计算预测 SARS-CoV-2 结构蛋白抑制剂。

A computational prediction of SARS-CoV-2 structural protein inhibitors from (Neem).

机构信息

Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India.

出版信息

J Biomol Struct Dyn. 2021 Jul;39(11):4111-4121. doi: 10.1080/07391102.2020.1774419. Epub 2020 Jun 11.

Abstract

The rapid global spread of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has created an unprecedented healthcare crisis. The treatment for the severe respiratory illness caused by this virus is primarily symptomatic at this point, although the usage of a broad antiviral drug Remdesivir has been allowed on emergency basis by the Food and Drug Administration (FDA). The ever-increasing death toll highlights an urgent need for development of specific antivirals. In this work, we have utilized docking and simulation methods to identify small molecule inhibitors of SARS-CoV-2 Membrane (M) and Envelope (E) proteins, which are essential for virus assembly and budding. A total of 70 compounds from an Indian medicinal plant source ( or Neem) were virtually screened against these two proteins and further analyzed with molecular dynamics simulations, which resulted in the identification of a few common compounds with strong binding to both structural proteins. The compounds bind to biologically critical regions of M and E, indicating their potential to inhibit the functionality of these components. We hope that our computational approach may result in the identification of effective inhibitors of SARS-CoV-2 assembly.Communicated by Ramaswamy H. Sarma.

摘要

严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)在全球范围内迅速传播,造成了前所未有的医疗保健危机。目前,这种病毒引起的严重呼吸道疾病主要是对症治疗,尽管食品和药物管理局(FDA)已允许将广谱抗病毒药物瑞德西韦紧急用于治疗。不断增加的死亡人数突出表明迫切需要开发特定的抗病毒药物。在这项工作中,我们利用对接和模拟方法来鉴定对 SARS-CoV-2 膜(M)和包膜(E)蛋白具有抑制作用的小分子抑制剂,这些蛋白对于病毒组装和出芽至关重要。从印度药用植物源(或印度楝树)筛选了总共 70 种化合物,对这两种蛋白进行了虚拟筛选,并进一步进行了分子动力学模拟分析,结果鉴定出了几种与两种结构蛋白均具有强结合能力的常见化合物。这些化合物与 M 和 E 的生物关键区域结合,表明它们有可能抑制这些成分的功能。我们希望我们的计算方法能够鉴定出有效的 SARS-CoV-2 组装抑制剂。由 Ramaswamy H. Sarma 传达。

相似文献

1
A computational prediction of SARS-CoV-2 structural protein inhibitors from (Neem).
J Biomol Struct Dyn. 2021 Jul;39(11):4111-4121. doi: 10.1080/07391102.2020.1774419. Epub 2020 Jun 11.
2
Identification of chymotrypsin-like protease inhibitors of SARS-CoV-2 integrated computational approach.
J Biomol Struct Dyn. 2021 Apr;39(7):2607-2616. doi: 10.1080/07391102.2020.1751298. Epub 2020 Apr 13.
3
Natural phyto, compounds as possible noncovalent inhibitors against SARS-CoV2 protease: computational approach.
J Biomol Struct Dyn. 2022 Mar;40(5):2284-2301. doi: 10.1080/07391102.2020.1837681. Epub 2020 Oct 25.
4
Anti-dengue infectivity evaluation of bioflavonoid from by dengue virus serine protease inhibition.
J Biomol Struct Dyn. 2021 Mar;39(4):1417-1430. doi: 10.1080/07391102.2020.1734485. Epub 2020 Mar 9.
6
Withanone and caffeic acid phenethyl ester are predicted to interact with main protease (M) of SARS-CoV-2 and inhibit its activity.
J Biomol Struct Dyn. 2021 Jul;39(11):3842-3854. doi: 10.1080/07391102.2020.1772108. Epub 2020 Jun 1.
7
prediction of natural compounds as potential multi-target inhibitors of structural proteins of SARS-CoV-2.
J Biomol Struct Dyn. 2022;40(22):12118-12134. doi: 10.1080/07391102.2021.1968497. Epub 2021 Sep 6.
8
An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study.
J Biomol Struct Dyn. 2021 Jun;39(9):3347-3357. doi: 10.1080/07391102.2020.1763201. Epub 2020 May 13.
10
Using integrated computational approaches to identify safe and rapid treatment for SARS-CoV-2.
J Biomol Struct Dyn. 2021 Jun;39(9):3387-3395. doi: 10.1080/07391102.2020.1764392. Epub 2020 May 15.

引用本文的文献

1
On the potential activity of hyaluronic acid as an antimicrobial agent: experimental and computational validations.
Bioprocess Biosyst Eng. 2025 Jan;48(1):27-42. doi: 10.1007/s00449-024-03091-4. Epub 2024 Sep 29.
2
Cheminformatics-based identification of phosphorylated RET tyrosine kinase inhibitors for human cancer.
Front Chem. 2024 Jul 17;12:1407331. doi: 10.3389/fchem.2024.1407331. eCollection 2024.
4
A Mini-Review on the Common Antiviral Drug Targets of Coronavirus.
Microorganisms. 2024 Mar 17;12(3):600. doi: 10.3390/microorganisms12030600.
5
The use of and , two Ghanaian herbal medicines in the management of mild COVID-19: A case report.
Clin Case Rep. 2024 Feb 23;12(2):e8539. doi: 10.1002/ccr3.8539. eCollection 2024 Feb.
7
Computational prediction of phytochemical inhibitors against the cap-binding domain of Rift Valley fever virus.
Mol Divers. 2024 Aug;28(4):2637-2650. doi: 10.1007/s11030-023-10702-x. Epub 2023 Jul 23.
8
IMPPAT 2.0: An Enhanced and Expanded Phytochemical Atlas of Indian Medicinal Plants.
ACS Omega. 2023 Feb 23;8(9):8827-8845. doi: 10.1021/acsomega.3c00156. eCollection 2023 Mar 7.
9
Bioactive Azadirachta indica and Melia azedarach leaves extracts with anti-SARS-CoV-2 and antibacterial activities.
PLoS One. 2023 Mar 8;18(3):e0282729. doi: 10.1371/journal.pone.0282729. eCollection 2023.
10
SARS-CoV-2 E protein: Pathogenesis and potential therapeutic development.
Biomed Pharmacother. 2023 Mar;159:114242. doi: 10.1016/j.biopha.2023.114242. Epub 2023 Jan 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验