Peng Chengtao, Li Bin, Li Ming, Wang Hongxiao, Zhao Zhuo, Qiu Bensheng, Chen Danny Z
Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, 230026, China.
Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.
Med Phys. 2020 Sep;47(9):4087-4100. doi: 10.1002/mp.14295. Epub 2020 Jun 23.
Metal implants in the patient's body can generate severe metal artifacts in x-ray computed tomography (CT) images. These artifacts may cover the tissues around the metal implants in CT images and even corrupt the tissue regions, thus affecting disease diagnosis using these images. Previous deep learning metal trace inpainting methods used both valid pixels of uncorrupted areas and invalid pixels of corrupted areas to patch metal trace (i.e., the holes of removed metal-corrupted regions). Such methods cannot recover fine details well and often suffer information mismatch due to interference of invalid pixels, thus incurring considerable secondary artifacts. In this paper, we develop a new irregular metal trace inpainting network for reducing metal artifacts.
We develop a new deep learning network to patch irregular metal trace in metal-corrupted sinograms to reduce metal artifacts for isometric fan-beam CT. Our new method patches irregular metal trace in CT sinograms using only valid pixels, avoiding interference from invalid pixels. Furthermore, to enable the inpainting network to recover as many details as possible, we design an auxiliary inpainting network to suppress the probable secondary artifacts in CT images to assist fine detail restoration. The image produced by the auxiliary network is then projected onto a sinogram via a forward projection (FP) algorithm and is fused with the sinogram predicted by the inpainting network in order to predict the final recovered sinogram. Our entire network is trained end-to-end to extract cross-domain information between the sinogram domain and CT image domain.
We compare our proposed method with two traditional and four deep learning-based metal trace inpainting methods, and with an iterative reconstruction method on four datasets: dental fillings (panoramic and local perspectives), hip prostheses, and spine fixations. We use both quantitative and qualitative indices to evaluate our method, and the analyses suggest that our method reduces the most metal artifacts and produces the best quality CT images. Additionally, our proposed method takes 0.1512 s on average to process a CT slice, which meets the clinical requirement.
This paper proposes a new deep learning network to patch irregular metal trace in corrupted sinograms to reduce metal artifacts. Our method restores more fine details in irregular metal trace and has a superior capability on metal artifact reduction compared with state-of-the-art methods.
患者体内的金属植入物会在X射线计算机断层扫描(CT)图像中产生严重的金属伪影。这些伪影可能会覆盖CT图像中金属植入物周围的组织,甚至破坏组织区域,从而影响利用这些图像进行疾病诊断。以往的深度学习金属痕迹修复方法既使用未损坏区域的有效像素,也使用损坏区域的无效像素来修补金属痕迹(即去除金属损坏区域的孔洞)。此类方法无法很好地恢复精细细节,并且由于无效像素的干扰经常会出现信息不匹配的情况,从而产生大量次生伪影。在本文中,我们开发了一种新的不规则金属痕迹修复网络以减少金属伪影。
我们开发了一种新的深度学习网络,用于修补金属损坏的正弦图中的不规则金属痕迹,以减少等距扇形束CT的金属伪影。我们的新方法仅使用有效像素来修补CT正弦图中的不规则金属痕迹,避免了无效像素的干扰。此外,为了使修复网络能够尽可能多地恢复细节,我们设计了一个辅助修复网络来抑制CT图像中可能出现的次生伪影,以协助精细细节恢复。然后,通过正向投影(FP)算法将辅助网络生成的图像投影到正弦图上,并与修复网络预测的正弦图融合,以预测最终恢复的正弦图。我们的整个网络进行端到端训练,以提取正弦图域和CT图像域之间的跨域信息。
我们将所提出的方法与两种传统的和四种基于深度学习的金属痕迹修复方法,以及一种迭代重建方法在四个数据集上进行比较:牙科填充物(全景和局部视角)、髋关节假体和脊柱固定装置。我们使用定量和定性指标来评估我们的方法,分析表明我们的方法减少的金属伪影最多,并且生成的CT图像质量最佳。此外,我们提出的方法平均处理一个CT切片需要0.1512秒,满足临床需求。
本文提出了一种新的深度学习网络,用于修补损坏的正弦图中的不规则金属痕迹以减少金属伪影。与现有方法相比,我们的方法在不规则金属痕迹中恢复了更多的精细细节,并且在减少金属伪影方面具有卓越的能力。