Suppr超能文献

用于减少X射线CT金属伪影的高斯扩散正弦图修复

Gaussian diffusion sinogram inpainting for X-ray CT metal artifact reduction.

作者信息

Peng Chengtao, Qiu Bensheng, Li Ming, Guan Yihui, Zhang Cheng, Wu Zhongyi, Zheng Jian

机构信息

Center for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China.

Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, China.

出版信息

Biomed Eng Online. 2017 Jan 5;16(1):1. doi: 10.1186/s12938-016-0292-9.

Abstract

BACKGROUND

Metal objects implanted in the bodies of patients usually generate severe streaking artifacts in reconstructed images of X-ray computed tomography, which degrade the image quality and affect the diagnosis of disease. Therefore, it is essential to reduce these artifacts to meet the clinical demands.

METHODS

In this work, we propose a Gaussian diffusion sinogram inpainting metal artifact reduction algorithm based on prior images to reduce these artifacts for fan-beam computed tomography reconstruction. In this algorithm, prior information that originated from a tissue-classified prior image is used for the inpainting of metal-corrupted projections, and it is incorporated into a Gaussian diffusion function. The prior knowledge is particularly designed to locate the diffusion position and improve the sparsity of the subtraction sinogram, which is obtained by subtracting the prior sinogram of the metal regions from the original sinogram. The sinogram inpainting algorithm is implemented through an approach of diffusing prior energy and is then solved by gradient descent. The performance of the proposed metal artifact reduction algorithm is compared with two conventional metal artifact reduction algorithms, namely the interpolation metal artifact reduction algorithm and normalized metal artifact reduction algorithm. The experimental datasets used included both simulated and clinical datasets.

RESULTS

By evaluating the results subjectively, the proposed metal artifact reduction algorithm causes fewer secondary artifacts than the two conventional metal artifact reduction algorithms, which lead to severe secondary artifacts resulting from impertinent interpolation and normalization. Additionally, the objective evaluation shows the proposed approach has the smallest normalized mean absolute deviation and the highest signal-to-noise ratio, indicating that the proposed method has produced the image with the best quality.

CONCLUSIONS

No matter for the simulated datasets or the clinical datasets, the proposed algorithm has reduced the metal artifacts apparently.

摘要

背景

植入患者体内的金属物体通常会在X射线计算机断层扫描的重建图像中产生严重的条纹伪影,这会降低图像质量并影响疾病诊断。因此,减少这些伪影以满足临床需求至关重要。

方法

在这项工作中,我们提出了一种基于先验图像的高斯扩散正弦图修复金属伪影减少算法,用于减少扇束计算机断层扫描重建中的这些伪影。在该算法中,源自组织分类先验图像的先验信息用于修复金属损坏的投影,并将其纳入高斯扩散函数。先验知识经过特别设计,用于定位扩散位置并提高减法正弦图的稀疏性,减法正弦图是通过从原始正弦图中减去金属区域的先验正弦图获得的。正弦图修复算法通过扩散先验能量的方法实现,然后通过梯度下降求解。将所提出的金属伪影减少算法的性能与两种传统的金属伪影减少算法进行比较,即插值金属伪影减少算法和归一化金属伪影减少算法。所使用的实验数据集包括模拟数据集和临床数据集。

结果

通过主观评估结果,所提出的金属伪影减少算法产生的二次伪影比两种传统金属伪影减少算法少,后两种算法由于不适当的插值和归一化会导致严重的二次伪影。此外,客观评估表明所提出的方法具有最小的归一化平均绝对偏差和最高的信噪比,表明所提出的方法产生了质量最好的图像。

结论

无论对于模拟数据集还是临床数据集,所提出的算法都明显减少了金属伪影。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ad6/5234134/00e480358217/12938_2016_292_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验