Neuroscience Translational Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.
Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, 92121, USA.
Mol Psychiatry. 2021 Oct;26(10):5751-5765. doi: 10.1038/s41380-020-0776-7. Epub 2020 May 29.
Beginning at early stages, human Alzheimer's disease (AD) brains manifest hyperexcitability, contributing to subsequent extensive synapse loss, which has been linked to cognitive dysfunction. No current therapy for AD is disease-modifying. Part of the problem with AD drug discovery is that transgenic mouse models have been poor predictors of potential human treatment. While it is undoubtedly important to test drugs in these animal models, additional evidence for drug efficacy in a human context might improve our chances of success. Accordingly, in order to test drugs in a human context, we have developed a platform of physiological assays using patch-clamp electrophysiology, calcium imaging, and multielectrode array (MEA) experiments on human (h)iPSC-derived 2D cortical neuronal cultures and 3D cerebral organoids. We compare hiPSCs bearing familial AD mutations vs. their wild-type (WT) isogenic controls in order to characterize the aberrant electrical activity in such a human context. Here, we show that these AD neuronal cultures and organoids manifest increased spontaneous action potentials, slow oscillatory events (~1 Hz), and hypersynchronous network activity. Importantly, the dual-allosteric NMDAR antagonist NitroSynapsin, but not the FDA-approved drug memantine, abrogated this hyperactivity. We propose a novel model of synaptic plasticity in which aberrant neural networks are rebalanced by NitroSynapsin. We propose that hiPSC models may be useful for screening drugs to treat hyperexcitability and related synaptic damage in AD.
从早期开始,人类阿尔茨海默病 (AD) 大脑就表现出过度兴奋,导致随后广泛的突触丧失,这与认知功能障碍有关。目前没有针对 AD 的治疗方法可以改变疾病进程。AD 药物发现的部分问题是,转基因小鼠模型一直是潜在人类治疗的糟糕预测指标。虽然在这些动物模型中测试药物无疑很重要,但在人类背景下增加药物疗效的证据可能会提高我们成功的机会。因此,为了在人类环境中测试药物,我们开发了一个使用膜片钳电生理学、钙成像和多电极阵列 (MEA) 实验的生理测定平台,该平台基于人诱导多能干细胞 (hiPSC) 衍生的 2D 皮质神经元培养物和 3D 脑类器官。我们比较了携带家族性 AD 突变的 hiPSC 与其野生型 (WT) 同基因对照,以在这种人类环境中表征异常电活动。在这里,我们表明,这些 AD 神经元培养物和类器官表现出自发动作电位增加、缓慢振荡事件(~1 Hz)和超同步网络活动。重要的是,双重变构 NMDA 受体拮抗剂 NitroSynapsin,但不是 FDA 批准的药物美金刚,消除了这种过度活跃。我们提出了一个新的突触可塑性模型,其中异常神经网络通过 NitroSynapsin 重新平衡。我们提出 hiPSC 模型可能有助于筛选治疗 AD 过度兴奋和相关突触损伤的药物。