Suppr超能文献

用于微电极阵列神经接口的 3D 纳米结构硼掺杂金刚石。

3D-nanostructured boron-doped diamond for microelectrode array neural interfacing.

机构信息

INSERM, UA01, Clinatec Laboratory, Biomedical Research Center Edmond J. Safra, F-38 000 Grenoble, France; Université Grenoble Alpes, UA01, Clinatec Laboratory, Biomedical Research Center Edmond J. Safra, F-38 000 Grenoble, France; CEA, LETI, Clinatec, F-38000 Grenoble, France.

CEA, LIST, Diamond Sensors Laboratory, 91191 Gif-sur-Yvette, France.

出版信息

Biomaterials. 2015 Jun;53:173-83. doi: 10.1016/j.biomaterials.2015.02.021. Epub 2015 Mar 13.

Abstract

The electrode material is a key element in the design of long-term neural implants and neuroprostheses. To date, the ideal electrode material offering high longevity, biocompatibility, low-noise recording and high stimulation capabilities remains to be found. We show that 3D-nanostructured boron doped diamond (BDD), an innovative material consisting in a chemically stable material with a high aspect ratio structure obtained by encapsulation of a carbon nanotube template within two BDD nanolayers, allows neural cell attachment, survival and neurite extension. Further, we developed arrays of 20-μm-diameter 3D-nanostructured BDD microelectrodes for neural interfacing. These microelectrodes exhibited low impedances and low intrinsic recording noise levels. In particular, they allowed the detection of low amplitude (10-20 μV) local-field potentials, single units and multiunit bursts neural activity in both acute whole embryonic hindbrain-spinal cord preparations and long-term hippocampal cell cultures. Also, cyclic voltammetry measurements showed a wide potential window of about 3 V and a charge storage capacity of 10 mC.cm(-2), showing high potentiality of this material for neural stimulation. These results demonstrate the attractiveness of 3D-nanostructured BDD as a novel material for neural interfacing, with potential applications for the design of biocompatible neural implants for the exploration and rehabilitation of the nervous system.

摘要

电极材料是长期神经植入物和神经假体设计的关键要素。迄今为止,仍未找到一种理想的电极材料,既能提供高耐久性、生物相容性、低噪声记录和高刺激能力。我们表明,3D 纳米结构硼掺杂金刚石(BDD)是一种创新材料,由碳纳米管模板封装在两个 BDD 纳米层内形成的高纵横比结构的化学稳定材料组成,允许神经细胞附着、存活和神经突延伸。此外,我们开发了用于神经接口的 20μm 直径 3D 纳米结构 BDD 微电极阵列。这些微电极具有低阻抗和低固有记录噪声水平。特别是,它们允许检测低幅度(10-20μV)局部场电位、单个单元和多单位爆发神经活动,无论是在急性整个胚胎延髓-脊髓制剂还是长期海马细胞培养物中。此外,循环伏安法测量显示约 3V 的宽电位窗口和 10mC.cm(-2) 的电荷存储容量,表明这种材料在神经刺激方面具有很高的潜力。这些结果表明,3D 纳米结构 BDD 作为一种新型神经接口材料具有吸引力,可应用于设计用于探索和康复神经系统的生物相容神经植入物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验