Suppr超能文献

基于端到端时空深度学习网络的全自动化数字减影血管造影序列颅内动脉瘤检测与分割。

Fully automated intracranial aneurysm detection and segmentation from digital subtraction angiography series using an end-to-end spatiotemporal deep neural network.

机构信息

Department of R&D, UnionStrong (Beijing) Technology Co.Ltd, Beijing, China.

China International Neuroscience Institute (China-INI), Beijing, China.

出版信息

J Neurointerv Surg. 2020 Oct;12(10):1023-1027. doi: 10.1136/neurintsurg-2020-015824. Epub 2020 May 29.

Abstract

BACKGROUND

Intracranial aneurysms (IAs) are common in the population and may cause death.

OBJECTIVE

To develop a new fully automated detection and segmentation deep neural network based framework to assist neurologists in evaluating and contouring intracranial aneurysms from 2D+time digital subtraction angiography (DSA) sequences during diagnosis.

METHODS

The network structure is based on a general U-shaped design for medical image segmentation and detection. The network includes a fully convolutional technique to detect aneurysms in high-resolution DSA frames. In addition, a bidirectional convolutional long short-term memory module is introduced at each level of the network to capture the change in contrast medium flow across the 2D DSA frames. The resulting network incorporates both spatial and temporal information from DSA sequences and can be trained end-to-end. Furthermore, deep supervision was implemented to help the network converge. The proposed network structure was trained with 2269 DSA sequences from 347 patients with IAs. After that, the system was evaluated on a blind test set with 947 DSA sequences from 146 patients.

RESULTS

Of the 354 aneurysms, 316 (89.3%) were successfully detected, corresponding to a patient level sensitivity of 97.7% at an average false positive number of 3.77 per sequence. The system runs for less than one second per sequence with an average dice coefficient score of 0.533.

CONCLUSIONS

This deep neural network assists in successfully detecting and segmenting aneurysms from 2D DSA sequences, and can be used in clinical practice.

摘要

背景

颅内动脉瘤(IA)在人群中很常见,可能导致死亡。

目的

开发一种新的完全自动化的检测和分割深度神经网络框架,以协助神经科医生在诊断过程中从 2D+时间数字减影血管造影(DSA)序列评估和勾画颅内动脉瘤。

方法

该网络结构基于用于医学图像分割和检测的通用 U 形设计。该网络包括用于在高分辨率 DSA 帧中检测动脉瘤的完全卷积技术。此外,在网络的每个级别引入了双向卷积长短期记忆模块,以捕获对比剂在 2D DSA 帧中的流动变化。由此产生的网络结合了来自 DSA 序列的空间和时间信息,可以进行端到端训练。此外,实施了深度监督以帮助网络收敛。该网络结构使用来自 347 名患有 IA 的患者的 2269 个 DSA 序列进行训练。之后,该系统在来自 146 名患者的 947 个 DSA 序列的盲测试集上进行了评估。

结果

在 354 个动脉瘤中,成功检测到 316 个(89.3%),平均每个序列的假阳性数为 3.77,患者水平的灵敏度为 97.7%。系统每个序列的运行时间不到一秒,平均骰子系数评分为 0.533。

结论

该深度神经网络有助于成功地从 2D DSA 序列中检测和分割动脉瘤,并可用于临床实践。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验