Suppr超能文献

基于深度学习的数字减影血管造影颅内动脉瘤检测:一项可行性研究。

Deep learning based detection of intracranial aneurysms on digital subtraction angiography: A feasibility study.

机构信息

Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland.

Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Switzerland.

出版信息

Neuroradiol J. 2020 Aug;33(4):311-317. doi: 10.1177/1971400920937647. Epub 2020 Jul 7.

Abstract

BACKGROUND

Digital subtraction angiography is the gold standard for detecting and characterising aneurysms. Here, we assess the feasibility of commercial-grade deep learning software for the detection of intracranial aneurysms on whole-brain anteroposterior and lateral 2D digital subtraction angiography images.

MATERIAL AND METHODS

Seven hundred and six digital subtraction angiography images were included from a cohort of 240 patients (157 female, mean age 59 years, range 20-92; 83 male, mean age 55 years, range 19-83). Three hundred and thirty-five (47%) single frame anteroposterior and lateral images of a digital subtraction angiography series of 187 aneurysms (41 ruptured, 146 unruptured; average size 7±5.3 mm, range 1-5 mm; total 372 depicted aneurysms) and 371 (53%) aneurysm-negative study images were retrospectively analysed regarding the presence of intracranial aneurysms. The 2D data was split into testing and training sets in a ratio of 4:1 with 3D rotational digital subtraction angiography as gold standard. Supervised deep learning was performed using commercial-grade machine learning software (Cognex, ViDi Suite 2.0). Monte Carlo cross validation was performed.

RESULTS

Intracranial aneurysms were detected with a sensitivity of 79%, a specificity of 79%, a precision of 0.75, a F1 score of 0.77, and a mean area-under-the-curve of 0.76 (range 0.68-0.86) after Monte Carlo cross-validation, run 45 times.

CONCLUSION

The commercial-grade deep learning software allows for detection of intracranial aneurysms on whole-brain, 2D anteroposterior and lateral digital subtraction angiography images, with results being comparable to more specifically engineered deep learning techniques.

摘要

背景

数字减影血管造影是检测和表征动脉瘤的金标准。在此,我们评估商用级深度学习软件在全脑前后位和侧位 2D 数字减影血管造影图像上检测颅内动脉瘤的可行性。

材料和方法

从 240 例患者的队列中纳入了 706 张数字减影血管造影图像(157 例女性,平均年龄 59 岁,范围 20-92;83 例男性,平均年龄 55 岁,范围 19-83)。187 个动脉瘤(41 个破裂,146 个未破裂;平均大小 7±5.3mm,范围 1-5mm;共 372 个显示动脉瘤)的数字减影血管造影系列中的 335 张(47%)单帧前后位和侧位图像和 371 张(53%)无动脉瘤的研究图像回顾性分析了颅内动脉瘤的存在情况。2D 数据以 4:1 的比例分为测试集和训练集,以 3D 旋转数字减影血管造影作为金标准。使用商用级机器学习软件(Cognex,ViDi Suite 2.0)进行监督深度学习。进行了蒙特卡罗交叉验证。

结果

经过 45 次蒙特卡罗交叉验证,颅内动脉瘤的检测灵敏度为 79%,特异性为 79%,精度为 0.75,F1 评分为 0.77,曲线下面积均值为 0.76(范围 0.68-0.86)。

结论

商用级深度学习软件可用于检测全脑、2D 前后位和侧位数字减影血管造影图像上的颅内动脉瘤,其结果与更专门设计的深度学习技术相当。

相似文献

引用本文的文献

本文引用的文献

6
Deep Learning-Based Detection of Intracranial Aneurysms in 3D TOF-MRA.基于深度学习的 3D TOF-MRA 颅内动脉瘤检测。
AJNR Am J Neuroradiol. 2019 Jan;40(1):25-32. doi: 10.3174/ajnr.A5911. Epub 2018 Dec 20.
8
Deep Learning in Neuroradiology.深度学习在神经影像学中的应用。
AJNR Am J Neuroradiol. 2018 Oct;39(10):1776-1784. doi: 10.3174/ajnr.A5543. Epub 2018 Feb 1.
10
Deep Learning: A Primer for Radiologists.深度学习:放射科医生入门。
Radiographics. 2017 Nov-Dec;37(7):2113-2131. doi: 10.1148/rg.2017170077.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验