Department of Biomechanics, University of Nebraska at Omaha, 6160 University Dr. South, Omaha, NE, 68182, USA.
Sci Rep. 2020 May 29;10(1):8793. doi: 10.1038/s41598-020-65626-5.
During locomotion, the human ankle-foot system dynamically alters its gearing, or leverage of the ankle joint on the ground. Shifting ankle-foot gearing regulates speed of plantarflexor (i.e., calf muscle) contraction, which influences economy of force production. Here, we tested the hypothesis that manipulating ankle-foot gearing via stiff-insoled shoes will change the force-velocity operation of plantarflexor muscles and influence whole-body energy cost differently across walking speeds. We used in vivo ultrasound imaging to analyze fascicle contraction mechanics and whole-body energy expenditure across three walking speeds (1.25, 1.75, and 2.0 m/s) and three levels of foot stiffness. Stiff insoles increased leverage of the foot upon the ground (p < 0.001), and increased dorsiflexion range-of-motion (p < 0.001). Furthermore, stiff insoles resulted in a 15.9% increase in average force output (p < 0.001) and 19.3% slower fascicle contraction speed (p = 0.002) of the major plantarflexor (Soleus) muscle, indicating a shift in its force-velocity operating region. Metabolically, the stiffest insoles increased energy cost by 9.6% at a typical walking speed (1.25 m/s, p = 0.026), but reduced energy cost by 7.1% at a fast speed (2.0 m/s, p = 0.040). Stiff insoles appear to add an extra gear unavailable to the human foot, which can enhance muscular performance in a specific locomotion task.
在运动过程中,人类踝关节-足系统会动态改变其传动比,即踝关节对地面的杠杆作用。改变踝关节传动比可以调节跖屈肌(即小腿肌肉)收缩的速度,从而影响力量产生的经济性。在这里,我们通过刚性鞋垫来改变踝关节-足的传动比,检验了这一假说,即改变踝关节-足的传动比将改变跖屈肌的力-速度运作,并以不同的方式影响整个身体的能量消耗。我们使用体内超声成像技术,在三种步行速度(1.25、1.75 和 2.0m/s)和三种鞋跟硬度下,分析了三个不同步行速度下的肌纤维收缩力学和整个身体的能量消耗。刚性鞋垫增加了脚对地面的杠杆作用(p<0.001),并增加了背屈运动范围(p<0.001)。此外,刚性鞋垫导致跖屈肌(比目鱼肌)的平均力输出增加了 15.9%(p<0.001),肌纤维收缩速度降低了 19.3%(p=0.002),表明其力-速度工作区域发生了变化。在代谢方面,最硬的鞋垫使典型步行速度(1.25m/s)的能量消耗增加了 9.6%(p=0.026),但使快速步行速度(2.0m/s)的能量消耗降低了 7.1%(p=0.040)。刚性鞋垫似乎增加了人体足部无法提供的额外传动比,这可以在特定的运动任务中提高肌肉性能。