Suppr超能文献

一种用于18F-FDG PET成像的新型个体代谢脑网络。

A Novel Individual Metabolic Brain Network for 18F-FDG PET Imaging.

作者信息

Huang Sheng-Yao, Hsu Jung-Lung, Lin Kun-Ju, Hsiao Ing-Tsung

机构信息

Department of Medical Imaging and Radiological Sciences, Healthy Aging Research Center, Taoyuan, Taiwan.

Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.

出版信息

Front Neurosci. 2020 May 12;14:344. doi: 10.3389/fnins.2020.00344. eCollection 2020.

Abstract

INTRODUCTION

Metabolic brain network analysis based on graph theory using FDG PET imaging is potentially useful for investigating brain activity alternation due to metabolism changes in different stages of Alzheimer's disease (AD). Most studies on metabolic network construction have been based on group data. Here a novel approach in building an individual metabolic network was proposed to investigate individual metabolic network abnormalities.

METHOD

First, a weighting matrix was calculated based on the interregional effect size difference of mean uptake between a single subject and average normal controls (NCs). Then the weighting matrix for a single subject was multiplied by a group-based connectivity matrix from an NC cohort. To study the performance of the proposed individual metabolic network, inter- and intra-hemispheric connectivity patterns in the groups of NC, sMCI (stable mild cognitive impairment), pMCI (progressive mild cognitive impairment), and AD using the proposed individual metabolic network were constructed and compared with those from the group-based results. The network parameters of global efficiency and clustering coefficient and the network density score (NDS) in the default-mode network (DMN) of generated individual metabolic networks were estimated and compared among the disease groups in AD.

RESULTS

Our results show that the intra- and inter-hemispheric connectivity patterns estimated from our individual metabolic network are similar to those from the group-based method. In particular, the key patterns of occipital-parietal and occipital-temporal inter-regional connectivity deficits detected in the groupwise network study for differentiating different disease groups in AD were also found in the individual network. A reduction trend was observed for network parameters of global efficiency and clustering coefficient, and also for the NDS from NC, sMCI, pMCI, and AD. There was no significant difference between NC and sMCI for all network parameters.

CONCLUSION

We proposed a novel method in constructing the individual metabolic network using a single-subject FDG PET image and a group-based NC connectivity matrix. The result has shown the effectiveness and feasibility of the proposed individual metabolic network in differentiating disease groups in AD. Future studies should include investigation of inter-individual variability and the correlation of individual network features to disease severities and clinical performance.

摘要

引言

基于图论利用氟代脱氧葡萄糖正电子发射断层扫描(FDG PET)成像进行代谢脑网络分析,对于研究阿尔茨海默病(AD)不同阶段代谢变化所导致的脑活动改变可能具有重要意义。大多数关于代谢网络构建的研究都基于群体数据。在此,我们提出了一种构建个体代谢网络的新方法,以研究个体代谢网络异常情况。

方法

首先,基于单个受试者与平均正常对照(NC)之间平均摄取的区域间效应大小差异计算权重矩阵。然后,将单个受试者的权重矩阵与来自NC队列的基于群体的连接矩阵相乘。为了研究所提出的个体代谢网络的性能,利用所提出的个体代谢网络构建了NC、稳定轻度认知障碍(sMCI)、进展性轻度认知障碍(pMCI)和AD组的半球间和半球内连接模式,并与基于群体的结果进行比较。估计并比较了生成的个体代谢网络在默认模式网络(DMN)中的全局效率、聚类系数等网络参数以及网络密度评分(NDS)在AD疾病组之间的差异。

结果

我们的结果表明,从我们的个体代谢网络估计的半球内和半球间连接模式与基于群体的方法相似。特别是,在用于区分AD不同疾病组的组水平网络研究中检测到的枕叶 - 顶叶和枕叶 - 颞叶区域间连接缺陷的关键模式,在个体网络中也被发现。全局效率、聚类系数以及NC、sMCI、pMCI和AD的NDS的网络参数均呈现出下降趋势。所有网络参数在NC和sMCI之间没有显著差异。

结论

我们提出了一种利用单受试者FDG PET图像和基于群体的NC连接矩阵构建个体代谢网络的新方法。结果表明所提出的个体代谢网络在区分AD疾病组方面具有有效性和可行性。未来的研究应包括个体间变异性的研究以及个体网络特征与疾病严重程度和临床表型的相关性研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a69f/7235322/908b7bda6c49/fnins-14-00344-g001.jpg

相似文献

1
A Novel Individual Metabolic Brain Network for 18F-FDG PET Imaging.
Front Neurosci. 2020 May 12;14:344. doi: 10.3389/fnins.2020.00344. eCollection 2020.
4
Short- and Long-Term Functional Connectivity Differences Associated with Alzheimer's Disease Progression.
Dement Geriatr Cogn Dis Extra. 2021 Sep 23;11(3):235-249. doi: 10.1159/000518233. eCollection 2021 Sep-Dec.
6
Brain Connectivity Based Prediction of Alzheimer's Disease in Patients With Mild Cognitive Impairment Based on Multi-Modal Images.
Front Hum Neurosci. 2019 Nov 15;13:399. doi: 10.3389/fnhum.2019.00399. eCollection 2019.
8
Prediction of Progressive Mild Cognitive Impairment by Multi-Modal Neuroimaging Biomarkers.
J Alzheimers Dis. 2016;51(4):1045-56. doi: 10.3233/JAD-151010.
9
The Combination of Functional and Structural MRI Is a Potential Screening Tool in Alzheimer's Disease.
Front Aging Neurosci. 2018 Sep 21;10:251. doi: 10.3389/fnagi.2018.00251. eCollection 2018.

引用本文的文献

4
Co-Community Network Analysis Reveals Alterations in Brain Networks in Alzheimer's Disease.
Brain Sci. 2025 May 18;15(5):517. doi: 10.3390/brainsci15050517.
5
Structural covariance analysis for neurodegenerative and neuroinflammatory brain disorders.
Brain. 2025 Sep 3;148(9):3072-3084. doi: 10.1093/brain/awaf151.
6
FDG-PET-based brain network analysis: a brief review of metabolic connectivity.
EJNMMI Rep. 2025 Jan 20;9(1):4. doi: 10.1186/s41824-024-00232-6.
7
Individual metabolic brain network abnormalities associated with drug-resistant mTLE vary in surgical outcomes.
Front Neurol. 2024 Dec 18;15:1444787. doi: 10.3389/fneur.2024.1444787. eCollection 2024.
8
Neuroimaging statistical approaches for determining neural correlates of Alzheimer's disease via positron emission tomography imaging.
Wiley Interdiscip Rev Comput Stat. 2023 Sep-Oct;15(5). doi: 10.1002/wics.1606. Epub 2023 Apr 3.

本文引用的文献

4
Association of Amyloid and Tau With Cognition in Preclinical Alzheimer Disease: A Longitudinal Study.
JAMA Neurol. 2019 Aug 1;76(8):915-924. doi: 10.1001/jamaneurol.2019.1424.
6
Indirect relation based individual metabolic network for identification of mild cognitive impairment.
J Neurosci Methods. 2018 Nov 1;309:188-198. doi: 10.1016/j.jneumeth.2018.09.007. Epub 2018 Sep 5.
7
Multimodal imaging-based therapeutic fingerprints for optimizing personalized interventions: Application to neurodegeneration.
Neuroimage. 2018 Oct 1;179:40-50. doi: 10.1016/j.neuroimage.2018.06.028. Epub 2018 Jun 14.
8
Glucose Metabolic Brain Network Differences between Chinese Patients with Lewy Body Dementia and Healthy Control.
Behav Neurol. 2018 May 8;2018:8420658. doi: 10.1155/2018/8420658. eCollection 2018.
9
A novel individual-level morphological brain networks constructing method and its evaluation in PET and MR images.
Heliyon. 2017 Dec 28;3(12):e00475. doi: 10.1016/j.heliyon.2017.e00475. eCollection 2017 Dec.
10
Data-Driven Sequence of Changes to Anatomical Brain Connectivity in Sporadic Alzheimer's Disease.
Front Neurol. 2017 Nov 7;8:580. doi: 10.3389/fneur.2017.00580. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验