Bagnoud Alexandre, Pramateftaki Paraskevi, Bogard Matthew J, Battin Tom J, Peter Hannes
Stream Biofilm and Ecosystem Research Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Groupe de recherche interuniversitaire en limnologie, Département des sciences biologiques, Université du Québec à Montréal, Montréal, QC, Canada.
Front Microbiol. 2020 May 14;11:771. doi: 10.3389/fmicb.2020.00771. eCollection 2020.
Despite the recognition of streams and rivers as sources of methane (CH) to the atmosphere, the role of CH oxidation (MOX) in these ecosystems remains poorly understood to date. Here, we measured the kinetics of MOX in stream sediments of 14 sites to resolve the ecophysiology of CH oxidizing bacteria (MOB) communities. The streams cover a gradient of land cover and associated physicochemical parameter and differed in stream- and porewater CH concentrations. Michealis-Menten kinetic parameter of MOX, maximum reaction velocity ( ), and CH concentration at half ( ) increased with CH supply. values in the micromolar range matched the CH concentrations measured in shallow stream sediments and indicate that MOX is mostly driven by low-affinity MOB. 16S rRNA gene sequencing identified MOB classified as and particularly . Their relative abundance correlated with gene counts and MOX rates, underscoring their pivotal role as CH oxidizers in stream sediments. Building on the concept of enterotypes, we identify two distinct groups of co-occurring MOB. While there was no taxonomic difference among the members of each cluster, one cluster contained abundant and common MOB, whereas the other cluster contained rare operational taxonomic units (OTUs) specific to a subset of streams. These integrated analyses of changes in MOB community structure, gene abundance, and the corresponding ecosystem process contribute to a better understanding of the distal controls on MOX in streams.
尽管人们已经认识到溪流和河流是大气中甲烷(CH)的来源,但迄今为止,CH氧化(MOX)在这些生态系统中的作用仍知之甚少。在这里,我们测量了14个地点溪流沉积物中MOX的动力学,以解析CH氧化细菌(MOB)群落的生态生理学。这些溪流涵盖了土地覆盖和相关物理化学参数的梯度,溪流和孔隙水中的CH浓度也有所不同。MOX的米氏动力学参数、最大反应速度( )和半反应时的CH浓度( )随CH供应的增加而增加。微摩尔范围内的 值与浅溪流沉积物中测得的CH浓度相匹配,表明MOX主要由低亲和力的MOB驱动。16S rRNA基因测序鉴定出的MOB分类为 ,特别是 。它们的相对丰度与 基因数量和MOX速率相关,突出了它们作为溪流沉积物中CH氧化器的关键作用。基于肠型的概念,我们识别出两组同时出现的不同MOB。虽然每个簇的成员之间没有分类学差异,但一个簇包含丰富且常见的MOB,而另一个簇包含特定于一部分溪流的罕见操作分类单元(OTU)。这些对MOB群落结构、基因丰度变化以及相应生态系统过程的综合分析有助于更好地理解溪流中MOX的远端控制。