Suppr超能文献

基于分层注意力网络的临床笔记患者表示迁移学习

Patient Representation Transfer Learning from Clinical Notes based on Hierarchical Attention Network.

作者信息

Si Yuqi, Roberts Kirk

机构信息

School of Biomedical Informatics, The University of Texas Health Science Center at Houston Houston, TX, USA.

出版信息

AMIA Jt Summits Transl Sci Proc. 2020 May 30;2020:597-606. eCollection 2020.

Abstract

To explicitly learn patient representations from longitudinal clinical notes, we propose a hierarchical attention-based recurrent neural network (RNN) with greedy segmentation to distinguish between shorter and longer, more meaningful gaps between notes. The proposed model is evaluated for both a direct clinical prediction task (mortality) and as a transfer learning pre-training model to downstream evaluation (phenotype prediction of obesity and its comorbidities). Experimental results first show the proposed model with appropriate segmentation achieved the best performance on mortality prediction, indicating the effectiveness of hierarchical RNNs in dealing with longitudinal clinical text. Attention weights from the models highlight those parts of notes with the largest impact on mortality prediction and hopefully provide a degree of interpretability. Following the transfer learning approach, we also demonstrate the effectiveness and generalizability of pre-trained patient representations on target tasks of phenotyping.

摘要

为了从纵向临床记录中明确学习患者表征,我们提出了一种基于分层注意力的循环神经网络(RNN),并采用贪婪分割来区分记录之间较短和较长、更有意义的间隔。所提出的模型针对直接临床预测任务(死亡率)以及作为下游评估的迁移学习预训练模型(肥胖及其合并症的表型预测)进行了评估。实验结果首先表明,具有适当分割的所提出模型在死亡率预测方面取得了最佳性能,这表明分层RNN在处理纵向临床文本方面的有效性。模型的注意力权重突出了对死亡率预测影响最大的记录部分,并有望提供一定程度的可解释性。遵循迁移学习方法,我们还展示了预训练患者表征在表型目标任务上的有效性和通用性。

相似文献

1
Patient Representation Transfer Learning from Clinical Notes based on Hierarchical Attention Network.
AMIA Jt Summits Transl Sci Proc. 2020 May 30;2020:597-606. eCollection 2020.
3
TGRA-P: Task-driven model predicts 90-day mortality from ICU clinical notes on mechanical ventilation.
Comput Methods Programs Biomed. 2023 Dec;242:107783. doi: 10.1016/j.cmpb.2023.107783. Epub 2023 Sep 1.
4
Deep Patient Representation of Clinical Notes via Multi-Task Learning for Mortality Prediction.
AMIA Jt Summits Transl Sci Proc. 2019 May 6;2019:779-788. eCollection 2019.
5
Temporal indexing of medical entity in Chinese clinical notes.
BMC Med Inform Decis Mak. 2019 Jan 31;19(Suppl 1):17. doi: 10.1186/s12911-019-0735-x.
8
SEQUENCE SEGMENTATION USING JOINT RNN AND STRUCTURED PREDICTION MODELS.
Proc IEEE Int Conf Acoust Speech Signal Process. 2017 Mar;2017:2422-2426. doi: 10.1109/ICASSP.2017.7952591. Epub 2017 Jun 19.
9
Generalized and transferable patient language representation for phenotyping with limited data.
J Biomed Inform. 2021 Apr;116:103726. doi: 10.1016/j.jbi.2021.103726. Epub 2021 Mar 9.
10
Learning With Interpretable Structure From Gated RNN.
IEEE Trans Neural Netw Learn Syst. 2020 Jul;31(7):2267-2279. doi: 10.1109/TNNLS.2020.2967051. Epub 2020 Feb 13.

引用本文的文献

1
Multi-Modal Fusion of Routine Care Electronic Health Records (EHR): A Scoping Review.
Information (Basel). 2025 Jan;16(1). doi: 10.3390/info16010054. Epub 2025 Jan 15.
3
Transfer learning for non-image data in clinical research: A scoping review.
PLOS Digit Health. 2022 Feb 17;1(2):e0000014. doi: 10.1371/journal.pdig.0000014. eCollection 2022 Feb.
4
CATAN: Chart-aware temporal attention network for adverse outcome prediction.
Proc (IEEE Int Conf Healthc Inform). 2021 Aug;2021:83-92. doi: 10.1109/ichi52183.2021.00024. Epub 2021 Oct 15.
5
Generalized and transferable patient language representation for phenotyping with limited data.
J Biomed Inform. 2021 Apr;116:103726. doi: 10.1016/j.jbi.2021.103726. Epub 2021 Mar 9.
6
Deep representation learning of patient data from Electronic Health Records (EHR): A systematic review.
J Biomed Inform. 2021 Mar;115:103671. doi: 10.1016/j.jbi.2020.103671. Epub 2020 Dec 31.
7
Pre-training phenotyping classifiers.
J Biomed Inform. 2021 Jan;113:103626. doi: 10.1016/j.jbi.2020.103626. Epub 2020 Nov 28.

本文引用的文献

1
Two-stage Federated Phenotyping and Patient Representation Learning.
Proc Conf Assoc Comput Linguist Meet. 2019 Aug;2019:283-291. doi: 10.18653/v1/W19-5030.
2
GRAM: Graph-based Attention Model for Healthcare Representation Learning.
KDD. 2017 Aug;2017:787-795. doi: 10.1145/3097983.3098126.
4
Enhancing clinical concept extraction with contextual embeddings.
J Am Med Inform Assoc. 2019 Nov 1;26(11):1297-1304. doi: 10.1093/jamia/ocz096.
5
Deep Patient Representation of Clinical Notes via Multi-Task Learning for Mortality Prediction.
AMIA Jt Summits Transl Sci Proc. 2019 May 6;2019:779-788. eCollection 2019.
7
ML-Net: multi-label classification of biomedical texts with deep neural networks.
J Am Med Inform Assoc. 2019 Nov 1;26(11):1279-1285. doi: 10.1093/jamia/ocz085.
8
Distributed learning from multiple EHR databases: Contextual embedding models for medical events.
J Biomed Inform. 2019 Apr;92:103138. doi: 10.1016/j.jbi.2019.103138. Epub 2019 Feb 27.
10
Patient representation learning and interpretable evaluation using clinical notes.
J Biomed Inform. 2018 Aug;84:103-113. doi: 10.1016/j.jbi.2018.06.016. Epub 2018 Jul 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验