Amin Muhamed, Sorour Mariam K, Kasry Amal
Department of Sciences, University College Groningen, University of Groningen, Hoendiepskade 23/24, 9718 BG Groningen, The Netherlands.
Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.
J Phys Chem Lett. 2020 Jun 18;11(12):4897-4900. doi: 10.1021/acs.jpclett.0c01064. Epub 2020 Jun 9.
SARS-CoV-2, since emerging in Wuhan, China, has been a major concern because of its high infection rate and has left more than six million infected people around the world. Many studies endeavored to reveal the structure of the SARS-CoV-2 compared to the SARS-CoV, in order to find solutions to suppress this high infection rate. Some of these studies showed that the mutations in the SARS-CoV spike (S) protein might be responsible for its higher affinity to the ACE2 human cell receptor. In this work, we used molecular dynamics simulations and Monte Carlo sampling to compare the binding affinities of the S proteins of SARS-CoV and SARS-CoV-2 to the ACE2. Our results show that the protein surface of the ACE2 at the receptor binding domain (RBD) exhibits negative electrostatic potential, while a positive potential is observed for the S proteins of SARS-CoV/SARS-CoV-2. In addition, the binding energies at the interface are slightly higher for SARS-CoV-2 because of enhanced electrostatic interactions. The major contributions to the electrostatic binding energies result from the salt bridges forming between R426 and ACE-2-E329 in the case of SARS-CoV and K417 and ACE2-D30 in the SARS-CoV-2. In addition, our results indicate that the enhancement in the binding energy is not due to a single mutant but rather because of the sophisticated structural changes induced by all these mutations together. This finding suggests that it is implausible for the SARS-CoV-2 to be a lab-engineered virus.
自在中国武汉出现以来,严重急性呼吸综合征冠状病毒2(SARS-CoV-2)因其高感染率一直备受关注,全球已有超过600万人感染。许多研究致力于揭示SARS-CoV-2与SARS-CoV相比的结构,以找到抑制这种高感染率的解决方案。其中一些研究表明,SARS-CoV刺突(S)蛋白中的突变可能是其对人细胞受体ACE2具有更高亲和力的原因。在这项工作中,我们使用分子动力学模拟和蒙特卡罗采样来比较SARS-CoV和SARS-CoV-2的S蛋白与ACE2的结合亲和力。我们的结果表明,受体结合域(RBD)处的ACE2蛋白表面呈现负静电势,而SARS-CoV/SARS-CoV-2的S蛋白则呈现正电势。此外,由于静电相互作用增强,SARS-CoV-2在界面处的结合能略高。静电结合能的主要贡献来自SARS-CoV中R426与ACE-2-E329之间以及SARS-CoV-2中K417与ACE2-D30之间形成的盐桥。此外,我们的结果表明,结合能的增强不是由于单个突变,而是由于所有这些突变共同引起的复杂结构变化。这一发现表明,SARS-CoV-2不太可能是一种实验室改造的病毒。