文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

源自 Hertwig 上皮根鞘细胞的外泌体样小泡促进牙本质牙髓组织的再生。

Exosome-like vesicles derived from Hertwig's epithelial root sheath cells promote the regeneration of dentin-pulp tissue.

机构信息

State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

出版信息

Theranostics. 2020 Apr 27;10(13):5914-5931. doi: 10.7150/thno.43156. eCollection 2020.


DOI:10.7150/thno.43156
PMID:32483427
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7254987/
Abstract

: The formation of dentin-pulp involves complex epithelial-mesenchymal interactions between Hertwig's epithelial root sheath cells (HERS) and dental papilla cells (DPCs). Earlier studies have identified some of the regulatory molecules participating in the crosstalk between HERS and DPCs and the formation of dentin-pulp. In the present study we focused on the role of HERS-secreted exosomes in DPCs and the formation of dentin-pulp. Specifically, we hypothesized that exosome-like vesicles (ELVs) might mediate the function of HERS and trigger lineage-specific differentiation of dental mesenchymal cells. To test our hypothesis, we evaluated the potential of ELVs derived from a HERS cell line (ELVs-H1) in inducing and differentiation of DPCs. : ELVs-H1 were characterized using transmission electron microscopy and dynamic light scattering. The proliferation, migration, and odontoblast differentiation of DPCs after treatment with ELVs-H1, was detected by CCK8, transwell, ALP, and mineralization assays, respectively. Real time PCR and western blotting were used to detect gene and protein expression. For studies, DPC cells were mixed with collagen gel combined with or without ELVs and transplanted into the renal capsule of rats or subcutaneously into nude mice. HE staining and immunostaining were used to verify the regeneration of dentin-pulp and expression of odontoblast differentiation markers. : ELVs-H1 promoted the migration and proliferation of DPCs and also induced odontogenic differentiation and activation of Wnt/β-catenin signaling. ELVs-H1 also contributed to tube formation and neural differentiation . In addition, ELVs-H1 attached to the collagen gel, and were slowly released and endocytosed by DPCs, enhancing cell survival. ELVs-H1 together with DPCs triggered regeneration of dental pulp-dentin like tissue comprised of hard (reparative dentin-like tissue) and soft (blood vessels and neurons) tissue, in an tooth root slice model. : Our data highlighted the potential of ELVs-H1 as biomimetic tools in providing a microenvironment for specific differentiation of dental mesenchymal stem cells. From a developmental perspective, these vesicles might be considered as novel mediators facilitating the epithelial-mesenchymal crosstalk. Their instructive potency might be exploited for the regeneration of dental pulp-dentin tissues.

摘要

牙髓的形成涉及 Hertwig 上皮根鞘细胞 (HERS) 和牙髓细胞 (DPC) 之间复杂的上皮-间充质相互作用。早期的研究已经确定了一些参与 HERS 和 DPC 之间串扰以及牙髓形成的调节分子。在本研究中,我们专注于 HERS 分泌的外泌体在 DPCs 和牙髓形成中的作用。具体而言,我们假设类囊泡 (ELVs) 可能介导 HERS 的功能,并触发牙齿间充质细胞的谱系特异性分化。为了验证我们的假设,我们评估了源自 HERS 细胞系的 ELVs (ELVs-H1) 在诱导 DPCs 增殖、迁移和牙本质分化中的潜力。通过透射电子显微镜和动态光散射对 ELVs-H1 进行了表征。通过 CCK8、transwell、ALP 和矿化测定分别检测 ELVs-H1 处理后 DPCs 的增殖、迁移和牙本质分化。实时 PCR 和 Western blot 用于检测基因和蛋白表达。对于体内研究,将 DPC 细胞与胶原凝胶混合,或不与 ELVs 混合,然后移植到大鼠肾包膜或裸鼠皮下。通过 HE 染色和免疫染色验证牙髓和牙本质分化标志物的再生。ELVs-H1 促进了 DPCs 的迁移和增殖,同时诱导了牙原性分化和 Wnt/β-catenin 信号通路的激活。ELVs-H1 还促进了管形成和神经分化。此外,ELVs-H1 附着在胶原凝胶上,被 DPCs 缓慢释放并内吞,增强了细胞的存活率。ELVs-H1 与 DPCs 一起在牙齿根切片模型中触发了牙髓-牙本质样组织的再生,该组织由硬组织 (修复性牙本质样组织) 和软组织 (血管和神经元) 组成。我们的数据强调了 ELVs-H1 作为仿生工具的潜力,为牙齿间充质干细胞的特异性分化提供了微环境。从发育的角度来看,这些囊泡可以被认为是促进上皮-间充质串扰的新型介质。它们的指导能力可以被利用来再生牙髓-牙本质组织。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afd8/7254987/7d862908814b/thnov10p5914g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afd8/7254987/30d2a4650652/thnov10p5914g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afd8/7254987/9627aaf5f79a/thnov10p5914g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afd8/7254987/3a86740f4897/thnov10p5914g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afd8/7254987/f78b72e728c9/thnov10p5914g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afd8/7254987/95776483cf01/thnov10p5914g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afd8/7254987/d91f72a1c8e2/thnov10p5914g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afd8/7254987/73fa90028f29/thnov10p5914g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afd8/7254987/7d862908814b/thnov10p5914g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afd8/7254987/30d2a4650652/thnov10p5914g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afd8/7254987/9627aaf5f79a/thnov10p5914g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afd8/7254987/3a86740f4897/thnov10p5914g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afd8/7254987/f78b72e728c9/thnov10p5914g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afd8/7254987/95776483cf01/thnov10p5914g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afd8/7254987/d91f72a1c8e2/thnov10p5914g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afd8/7254987/73fa90028f29/thnov10p5914g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afd8/7254987/7d862908814b/thnov10p5914g008.jpg

相似文献

[1]
Exosome-like vesicles derived from Hertwig's epithelial root sheath cells promote the regeneration of dentin-pulp tissue.

Theranostics. 2020

[2]
Development of immortalized Hertwig's epithelial root sheath cell lines for cementum and dentin regeneration.

Stem Cell Res Ther. 2019-1-3

[3]
Immortalized Hertwig's epithelial root sheath cell line works as model for epithelial-mesenchymal interaction during tooth root formation.

J Cell Physiol. 2019-9-12

[4]
Are Hertwig's epithelial root sheath cells necessary for periodontal formation by dental follicle cells?

Arch Oral Biol. 2018-6-18

[5]
Inhibition of soluble epoxide hydrolase enhances the dentin-pulp complex regeneration mediated by crosstalk between vascular endothelial cells and dental pulp stem cells.

J Transl Med. 2024-1-16

[6]
Therapeutic potential of HERS spheroids in tooth regeneration.

Theranostics. 2020

[7]
Hertwig's epithelial root sheath cells show potential for periodontal complex regeneration.

J Periodontol. 2023-2

[8]
Mesenchymal dental pulp cells attenuate dentin resorption in homeostasis.

J Dent Res. 2015-6

[9]
Effect of the Soluble Factors Released by Dental Apical Papilla-Derived Stem Cells on the Osteo/Odontogenic, Angiogenic, and Neurogenic Differentiation of Dental Pulp Cells.

Stem Cells Dev. 2020-6-15

[10]
Hertwig's epithelial root sheath cells regulate osteogenic differentiation of dental follicle cells through the Wnt pathway.

Bone. 2014-6

引用本文的文献

[1]
Optimizing methods for regenerative endodontics.

Regen Med. 2025-8

[2]
The comprehensive progress of tooth regeneration from the tooth development to tissue engineering and clinical application.

Cell Regen. 2025-7-31

[3]
The Hippo-YAP/β-catenin signaling axis coordinates odontogenic differentiation in dental pulp stem cells: Implications for dentin-pulp regeneration.

PLoS One. 2025-6-26

[4]
Mechanistic insights into dental stem cells-derived exosomes in regenerative endodontics.

Int Endod J. 2025-6-11

[5]
Diagnostic and therapeutic potential of oral cavity-derived exosomes in oral and maxillofacial tissue engineering: current advances and future perspectives.

Naunyn Schmiedebergs Arch Pharmacol. 2025-6-10

[6]
Emerging roles of extracellular vesicles in oral and maxillofacial areas.

Int J Oral Sci. 2025-2-4

[7]
Dental pulp stem cell‑derived extracellular vesicles loaded with hydrogels promote osteogenesis in rats with alveolar bone defects.

Mol Med Rep. 2025-1

[8]
Applications and interventions of polymers and nanomaterials in alveolar bone regeneration and tooth dentistry.

RSC Adv. 2024-11-12

[9]
Exosome-Laden Hydrogels as Promising Carriers for Oral and Bone Tissue Engineering: Insight into Cell-Free Drug Delivery.

Int J Mol Sci. 2024-10-15

[10]
The role of biophysical cues and their modulated exosomes in dental diseases: from mechanism to therapy.

Stem Cell Res Ther. 2024-10-19

本文引用的文献

[1]
Molecular and cellular mechanisms of tooth development, homeostasis and repair.

Development. 2020-1-24

[2]
Immortalized Hertwig's epithelial root sheath cell line works as model for epithelial-mesenchymal interaction during tooth root formation.

J Cell Physiol. 2019-9-12

[3]
Excessive exosome release is the pathogenic pathway linking a lysosomal deficiency to generalized fibrosis.

Sci Adv. 2019-7-17

[4]
Parenchymal and stromal tissue regeneration of tooth organ by pivotal signals reinstated in decellularized matrix.

Nat Mater. 2019-5-21

[5]
WNT3a and WNT5a Transported by Exosomes Activate WNT Signaling Pathways in Human Cardiac Fibroblasts.

Int J Mol Sci. 2019-3-21

[6]
Mesenchymal stem cell exosomes enhance periodontal ligament cell functions and promote periodontal regeneration.

Acta Biomater. 2019-3-13

[7]
The Effects of Mitogen-activated Protein Kinase Signaling Pathways on Lipopolysaccharide-mediated Osteo/Odontogenic Differentiation of Stem Cells from the Apical Papilla.

J Endod. 2019-2

[8]
IFT80 is required for stem cell proliferation, differentiation, and odontoblast polarization during tooth development.

Cell Death Dis. 2019-1-25

[9]
The Role of Angiogenesis and Pro-Angiogenic Exosomes in Regenerative Dentistry.

Int J Mol Sci. 2019-1-18

[10]
Engineering Bioactive Self-Healing Antibacterial Exosomes Hydrogel for Promoting Chronic Diabetic Wound Healing and Complete Skin Regeneration.

Theranostics. 2019-1-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索