Suppr超能文献

一种用于识别自杀性语言变化的机器学习方法。

A Machine Learning Approach to Identifying Changes in Suicidal Language.

机构信息

Department of Pediatrics, Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.

Department of Pediatrics, Division of Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.

出版信息

Suicide Life Threat Behav. 2020 Oct;50(5):939-947. doi: 10.1111/sltb.12642. Epub 2020 Jun 2.

Abstract

OBJECTIVE

With early identification and intervention, many suicidal deaths are preventable. Tools that include machine learning methods have been able to identify suicidal language. This paper examines the persistence of this suicidal language up to 30 days after discharge from care.

METHOD

In a multi-center study, 253 subjects were enrolled into either suicidal or control cohorts. Their responses to standardized instruments and interviews were analyzed using machine learning algorithms. Subjects were re-interviewed approximately 30 days later, and their language was compared to the original language to determine the presence of suicidal ideation.

RESULTS

The results show that language characteristics used to classify suicidality at the initial encounter are still present in the speech 30 days later (AUC = 89% (95% CI: 85-95%), p < .0001) and that algorithms trained on the second interviews could also identify the subjects that produced the first interviews (AUC = 85% (95% CI: 81-90%), p < .0001).

CONCLUSIONS

This approach explores the stability of suicidal language. When using advanced computational methods, the results show that a patient's language is similar 30 days after first captured, while responses to standard measures change. This can be useful when developing methods that identify the data-based phenotype of a subject.

摘要

目的

通过早期识别和干预,可以预防许多自杀死亡。包括机器学习方法在内的工具已经能够识别自杀性语言。本文研究了从护理中出院后长达 30 天的这种自杀性语言的持续存在。

方法

在一项多中心研究中,253 名受试者被纳入自杀组或对照组。使用机器学习算法对他们对标准化工具和访谈的反应进行了分析。大约 30 天后对受试者进行重新访谈,并将他们的语言与原始语言进行比较,以确定是否存在自杀意念。

结果

结果表明,最初遇到时用于分类自杀倾向的语言特征在 30 天后的讲话中仍然存在(AUC = 89%(95%CI:85-95%),p <.0001),并且在第二次访谈中训练的算法也可以识别产生第一次访谈的受试者(AUC = 85%(95%CI:81-90%),p <.0001)。

结论

该方法探讨了自杀性语言的稳定性。当使用先进的计算方法时,结果表明患者的语言在首次捕获后 30 天内相似,而对标准措施的反应则发生变化。这在开发基于数据识别受试者表型的方法时可能很有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验