Lund University, Department of Biology, Sölvegatan 35B, 22362 Lund, Sweden.
California State University San Marcos, 333 S. Twin Oaks Valley Rd., San Marcos, CA 92096, USA.
Mitochondrion. 2020 Jul;53:158-165. doi: 10.1016/j.mito.2020.05.010. Epub 2020 May 30.
Plant mitochondrial oxidative phosphorylation is characterised by alternative electron transport pathways with different energetic efficiencies, allowing turnover of cellular redox compounds like NAD(P)H. These electron transport chain pathways are profoundly affected by soil nitrogen availability, most commonly as oxidized nitrate (NO) and/or reduced ammonium (NH). The bioenergetic strategies involved in assimilating different N sources can alter redox homeostasis and antioxidant systems in different cellular compartments, including the mitochondria and the cell wall. Conversely, changes in mitochondrial redox systems can affect plant responses to N. This review explores the integration between N assimilation, mitochondrial redox metabolism, and apoplast metabolism.
植物线粒体氧化磷酸化的特点是具有不同能量效率的替代电子传递途径,允许细胞还原化合物(如 NAD(P)H)的周转。这些电子传递链途径受到土壤氮素供应的极大影响,最常见的是氧化态硝酸盐(NO)和/或还原态铵(NH)。同化不同氮源所涉及的生物能学策略可以改变不同细胞区室(包括线粒体和细胞壁)中的氧化还原平衡和抗氧化系统。相反,线粒体氧化还原系统的变化会影响植物对氮的反应。本综述探讨了氮同化、线粒体氧化还原代谢和质外体代谢之间的整合。