Suppr超能文献

结合多材料熔融沉积建模和超临界CO₂技术制造3D打印可生物降解多孔支架

Fabrication of 3D-Printed Biodegradable Porous Scaffolds Combining Multi-Material Fused Deposition Modeling and Supercritical CO Techniques.

作者信息

Sanz-Horta Raúl, Elvira Carlos, Gallardo Alberto, Reinecke Helmut, Rodríguez-Hernández Juan

机构信息

Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), Department of Applied Macromolecular Chemistry, Juan de la Cierva 3, 28006 Madrid, Spain.

Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28006 Madrid, Spain.

出版信息

Nanomaterials (Basel). 2020 May 31;10(6):1080. doi: 10.3390/nano10061080.

Abstract

The fabrication of porous materials for tissue engineering applications in a straightforward manner is still a current challenge. Herein, by combining the advantages of two conventional methodologies with additive manufacturing, well-defined objects with internal and external porosity were produced. First of all, multi-material fused deposition modeling (FDM) allowed us to prepare structures combining poly (ε-caprolactone) (PCL) and poly (lactic acid) (PLA), thus enabling to finely tune the final mechanical properties of the printed part with modulus and strain at break varying from values observed for pure PCL (modulus 200 MPa, strain at break 1700%) and PLA (modulus 1.2 GPa and strain at break 5-7%). More interestingly, supercritical CO (SCCO) as well as the breath figures mechanism (BFs) were additionally employed to produce internal (pore diameters 80-300 µm) and external pores (with sizes ranging between 2 and 12 μm) exclusively in those areas where PCL is present. This strategy will offer unique possibilities to fabricate intricate structures combining the advantages of additive manufacturing (AM) in terms of flexibility and versatility and those provided by the SCCO and BFs to finely tune the formation of porous structures.

摘要

以直接的方式制造用于组织工程应用的多孔材料仍然是当前面临的一项挑战。在此,通过将两种传统方法的优点与增材制造相结合,制备出了具有内部和外部孔隙的形状明确的物体。首先,多材料熔融沉积建模(FDM)使我们能够制备结合了聚(ε-己内酯)(PCL)和聚(乳酸)(PLA)的结构,从而能够精细调整打印部件的最终机械性能,其模量和断裂应变的值介于纯PCL(模量200 MPa,断裂应变1700%)和PLA(模量1.2 GPa,断裂应变5 - 7%)所观察到的值之间。更有趣的是,超临界CO₂(SCCO₂)以及呼吸图案机制(BFs)被额外用于仅在存在PCL的区域产生内部孔隙(孔径80 - 300 µm)和外部孔隙(尺寸范围在2至12 µm之间)。这种策略将提供独特的可能性,以制造结合增材制造(AM)在灵活性和通用性方面的优点以及SCCO₂和BFs所提供的优点来精细调整多孔结构形成的复杂结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edca/7353290/f8b44504b614/nanomaterials-10-01080-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验