Suppr超能文献

关于个性化生物支架的熔融沉积建模:材料、设计与制造方面

On the Fused Deposition Modelling of Personalised Bio-Scaffolds: Materials, Design, and Manufacturing Aspects.

作者信息

Sousa Helena Cardoso, Ruben Rui B, Viana Júlio C

机构信息

IPC/LASI-Institute of Polymers and Composites/Associated Laboratory in Intelligent Systems, Polymer Engineering Department, University of Minho, 4800-058 Guimarães, Portugal.

ESTG-CDRSP, Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal.

出版信息

Bioengineering (Basel). 2024 Jul 31;11(8):769. doi: 10.3390/bioengineering11080769.

Abstract

Bone tissue engineering (BTE) is an important field of research, essential in order to heal bone defects or replace impaired tissues and organs. As one of the most used additive manufacturing processes, 3D printing can produce biostructures in the field of tissue engineering for bones, orthopaedic tissues, and organs. Scaffold manufacturing techniques and suitable materials with final structural, mechanical properties, and the biological response of the implanted biomaterials are an essential part of BTE. In fact, the scaffold is an essential component for tissue engineering where cells can attach, proliferate, and differentiate to develop functional tissue. Fused deposition modelling (FDM) is commonly employed in the 3D printing of tissue-engineering scaffolds. Scaffolds must have a good architecture, considering the porosity, permeability, degradation, and healing capabilities. In fact, the architecture of a scaffold is crucial, influencing not only the physical and mechanical properties but also the cellular behaviours of mesenchymal stem cells. Cells placed on/or within the scaffolds is a standard approach in tissue engineering. For bio-scaffolds, materials that are biocompatible and biodegradable, and can support cell growth are the ones chosen. These include polymers like polylactic acid (PLA), polycaprolactone (PCL), and certain bioglass or composite materials. This work comprehensively integrates aspects related to the optimisation of biocompatible and biodegradable composites with the low cost, simple, and stable FDM technology to successfully prepare the best designed composite porous bone-healing scaffolds. FDM can be used to produce low-cost bone scaffolds, with a suitable porosity and permeability.

摘要

骨组织工程(BTE)是一个重要的研究领域,对于修复骨缺损或替换受损组织和器官至关重要。作为最常用的增材制造工艺之一,3D打印可在骨组织工程、骨科组织和器官领域制造生物结构。支架制造技术以及具有最终结构、力学性能和植入生物材料生物学反应的合适材料是骨组织工程的重要组成部分。事实上,支架是组织工程的关键组成部分,细胞可在其上附着、增殖并分化以发育成功能组织。熔融沉积建模(FDM)常用于组织工程支架打印。考虑到孔隙率、渗透性、降解和愈合能力,支架必须具有良好的结构。实际上,支架的结构至关重要,不仅影响物理和力学性能,还影响间充质干细胞的细胞行为。将细胞置于支架上或支架内是组织工程中的标准方法。对于生物支架,选择具有生物相容性和可生物降解性且能支持细胞生长的材料。这些材料包括聚乳酸(PLA)、聚己内酯(PCL)等聚合物以及某些生物玻璃或复合材料。这项工作全面整合了与优化生物相容性和可生物降解复合材料相关的各个方面,以及低成本、简单且稳定的FDM技术,成功制备出设计最佳的复合多孔骨愈合支架。FDM可用于制造具有合适孔隙率和渗透性的低成本骨支架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a057/11352192/3713f200d9dc/bioengineering-11-00769-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验