Suppr超能文献

两性离子多孔共轭聚合物作为抗生物污损可植入生物电子学的通用平台

Zwitterionic Porous Conjugated Polymers as a Versatile Platform for Antibiofouling Implantable Bioelectronics.

作者信息

Xu Jinjia, Xu Jian, Moon Haesoo, Sintim Herman O, Lee Hyowon

机构信息

Weldon School of Biomedical Engineering, Birck Nanotechnology Center, Center for Implantable Devices, Purdue University, West Lafayette, Indiana 47906, United States.

Department of Chemistry, Center for Drug Discovery, Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47906, United States.

出版信息

ACS Appl Polym Mater. 2020 Feb 14;2(2):528-536. doi: 10.1021/acsapm.9b00950. Epub 2020 Feb 5.

Abstract

Here, we describe the design, synthesis, and evaluation of two kinds of multifunctional zwitterionic linear poly(carboxybetaine thiophene) (PCBTh) and porous poly(carboxybetaine thiophene--9,9'-bifluoreneylidene) (PCBTh-BF) polymers, which can be facilely synthesized using Yamamoto and Suzuki polycondensation, respectively. The integrations of zwitterionic polymer-based biomaterials that consist of conjugated polymer backbones, multifunctional zwitterionic side chains, and distorted units are designed and studied to address a key challenge of conjugated polymers in biomedical applications: biofouling phenomena that eventually lead to the failure and reduced lifetime of bioelectronics in the body. The introduction of a twisting unit into the polymer backbone allows us to tune the porosity, morphology, optical properties, and efficiency of antibiofouling features of resulting polymers. The PCBTh-BF coated surface exhibits good conductivity, stability, hydrophilicity, and antibiofouling properties against protein adsorption, cell growth, and bacteria attachment, which may be useful for chronic in vivo bioelectronics applications by minimizing the foreign body response.

摘要

在此,我们描述了两种多功能两性离子线性聚(羧基甜菜碱噻吩)(PCBTh)和多孔聚(羧基甜菜碱噻吩 - 9,9'-亚芴基)(PCBTh - BF)聚合物的设计、合成及评估,它们可分别通过山本和铃木缩聚反应轻松合成。由共轭聚合物主链、多功能两性离子侧链和扭曲单元组成的基于两性离子聚合物的生物材料的整合设计和研究,旨在解决共轭聚合物在生物医学应用中的一个关键挑战:生物污损现象,这种现象最终会导致生物电子器件在体内失效并缩短其使用寿命。在聚合物主链中引入扭曲单元使我们能够调节所得聚合物的孔隙率、形态、光学性质以及抗生物污损特性的效率。PCBTh - BF涂层表面表现出良好的导电性、稳定性、亲水性以及针对蛋白质吸附、细胞生长和细菌附着的抗生物污损性能,通过最小化异物反应,这可能对慢性体内生物电子学应用有用。

相似文献

6
Nonfouling property of zwitterionic cysteine surface.两性离子半胱氨酸表面的抗污性能
Langmuir. 2014 Jun 10;30(22):6497-507. doi: 10.1021/la500243s. Epub 2014 May 30.
7
Ionic Conductivity of Polyelectrolyte Hydrogels.聚电解质水凝胶的离子电导率。
ACS Appl Mater Interfaces. 2018 Feb 14;10(6):5845-5852. doi: 10.1021/acsami.7b15934. Epub 2018 Jan 31.

引用本文的文献

本文引用的文献

1
Protein Resistant Polymeric Biomaterials.抗蛋白质聚合物生物材料
ACS Macro Lett. 2017 Sep 19;6(9):992-1000. doi: 10.1021/acsmacrolett.7b00448. Epub 2017 Aug 29.
3
Towards smart self-clearing glaucoma drainage device.迈向智能自清洁青光眼引流装置。
Microsyst Nanoeng. 2018 Nov 5;4:35. doi: 10.1038/s41378-018-0032-3. eCollection 2018.
7
Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials (Nobel Lecture).半导体与金属聚合物:第四代高分子材料(诺贝尔演讲)
Angew Chem Int Ed Engl. 2001 Jul 16;40(14):2591-2611. doi: 10.1002/1521-3773(20010716)40:14<2591::AID-ANIE2591>3.0.CO;2-0.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验