Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.
Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee, USA.
J Biomed Mater Res A. 2021 Mar;109(3):272-288. doi: 10.1002/jbm.a.37021. Epub 2020 Jul 4.
Neointimal hyperplasia (NH) is a main source of failures in arteriovenous fistulas and vascular grafts. Several studies have demonstrated the promise of perivascular wraps to reduce NH via promotion of adventitial neovascularization and providing mechanical support. Limited clinical success thus far may be due to inappropriate material selection (e.g., nondegradable, too stiff) and geometric design (e.g., pore size and spacing, diameter). The influence of pore size and spacing on implant neovascularization is investigated here for a new biodegradable, thermoresponsive shape memory polymer (SMP) perivascular wrap. Following an initial pilot, 21 mice were each implanted with six scaffolds: four candidate SMP macroporous designs (a-d), a nonporous SMP control (e), and microporous GORETEX (f). Mice were sacrificed after 4 (N = 5), 14 (N = 8), and 28 (N = 8) days. There was a statistically significant increase in neovascularization score between all macroporous groups compared to nonporous SMP (p < .023) and microporous GORETEX (p < .007) controls at Day 28. Wider-spaced, smaller-sized pore designs (223 μm-spaced, 640 μm-diameter Design c) induced the most robust angiogenic response, with greater microvessel number (p < .0114) and area (p < .0055) than nonporous SMPs and GORETEX at Day 28. This design also produced significantly greater microvessel density than nonporous SMPs (p = 0.0028) and a smaller-spaced, larger-sized pore (155 μm-spaced, 1,180 μm-sized Design b) design (p = .0013). Strong neovascularization is expected to reduce NH, motivating further investigation of this SMP wrap with controlled pore spacing and size in more advanced arteriovenous models.
血管新生内膜增生(NH)是动静脉瘘和血管移植物失败的主要原因。多项研究表明,血管周包裹物通过促进外膜新生血管形成和提供机械支撑,有望减少 NH。迄今为止,有限的临床成功可能是由于材料选择不当(例如,不可降解、太硬)和几何设计不当(例如,孔径和间距、直径)。本研究探讨了一种新的可生物降解、温敏形状记忆聚合物(SMP)血管周包裹物的孔径和间距对植入物新生血管形成的影响。在初步试验后,21 只小鼠分别植入了 6 个支架:4 种候选 SMP 大孔设计(a-d)、一种无孔 SMP 对照(e)和微孔 GORETEX(f)。在第 4(N = 5)、14(N = 8)和 28(N = 8)天处死小鼠。与无孔 SMP(p < 0.023)和微孔 GORETEX(p < 0.007)对照相比,所有大孔组在第 28 天的新生血管化评分均有统计学意义上的增加。间隔较大、孔径较小的设计(223μm 间隔、640μm 直径的设计 c)诱导出最强的血管生成反应,与无孔 SMP 和 GORETEX 相比,微血管数量(p < 0.0114)和面积(p < 0.0055)更大。该设计的微血管密度也显著大于无孔 SMP(p = 0.0028),而较小间隔、较大孔径(155μm 间隔、1180μm 孔径设计 b)设计(p = 0.0013)。强烈的血管新生有望减少 NH,这促使我们进一步研究这种具有可控孔径间距和尺寸的 SMP 包裹物在更先进的动静脉模型中的应用。