Suppr超能文献

一种用于从诱发反应电位中进行皮层记录位点分层识别的模板匹配算法。

A template-matching algorithm for laminar identification of cortical recording sites from evoked response potentials.

作者信息

Matteucci Giulio, Riggi Margherita, Zoccolan Davide

机构信息

Neuroscience, SISSA, Italy.

出版信息

J Neurophysiol. 2020 Jun 3;124(1):102-14. doi: 10.1152/jn.00033.2020.

Abstract

In recent years, the advent of the so-called silicon probes has made it possible to homogeneously sample spikes and local field potentials (LFPs) from a regular grid of cortical recording sites. In principle, this allows inferring the laminar location of the sites based on the spatiotemporal pattern of LFPs recorded along the probe, as in the well-known current source-density (CSD) analysis. This approach, however, has several limitations, since it relies on visual identification of landmark features (i.e., current sinks and sources) by human operators - features that can be absent from the CSD pattern if the probe does not span the whole cortical thickness, thus making manual labelling harder. Furthermore, as any manual annotation procedure, the typical CSD-based workflow for laminar identification of recording sites is affected by subjective judgment undermining the consistency and reproducibility of results. To overcome these limitations, we developed an alternative approach, based on finding the optimal match between the LFPs recorded along a probe in a given experiment and a template LFP profile that was computed using 18 recording sessions, in which the depth of the recording sites had been recovered through histology. We show that this method can achieve an accuracy of 79 µm in recovering the cortical depth of recording sites and a 76% accuracy in inferring their laminar location. As such, our approach provides an alternative to CSD that, being fully automated, is less prone to the idiosyncrasies of subjective judgment and works reliably also for recordings spanning a limited cortical stretch.

摘要

近年来,所谓的硅探针的出现使得从皮质记录位点的规则网格中均匀采样尖峰和局部场电位(LFP)成为可能。原则上,这允许根据沿探针记录的LFP的时空模式推断位点的层状位置,就像在著名的电流源密度(CSD)分析中那样。然而,这种方法有几个局限性,因为它依赖于人工操作员对标志性特征(即电流汇和电流源)的视觉识别——如果探针没有跨越整个皮质厚度,这些特征可能会在CSD模式中缺失,从而使手动标记更加困难。此外,与任何手动注释程序一样,基于CSD的记录位点层状识别的典型工作流程受到主观判断的影响,破坏了结果的一致性和可重复性。为了克服这些局限性,我们开发了一种替代方法,该方法基于在给定实验中找到沿探针记录的LFP与使用18个记录会话计算的模板LFP轮廓之间的最佳匹配,在这些记录会话中,记录位点的深度已通过组织学方法恢复。我们表明,这种方法在恢复记录位点的皮质深度方面可以达到79 µm的精度,在推断其层状位置方面可以达到76%的精度。因此,我们的方法为CSD提供了一种替代方法,该方法完全自动化,不太容易受到主观判断的特殊性影响,并且对于跨越有限皮质范围的记录也能可靠地工作。

相似文献

2
Primary Generators of Visually Evoked Field Potentials Recorded in the Macaque Auditory Cortex.
J Neurosci. 2017 Oct 18;37(42):10139-10153. doi: 10.1523/JNEUROSCI.3800-16.2017. Epub 2017 Sep 18.
4
Linear distributed source modeling of local field potentials recorded with intra-cortical electrode arrays.
PLoS One. 2017 Dec 18;12(12):e0187490. doi: 10.1371/journal.pone.0187490. eCollection 2017.
5
Discrepancies between Multi-Electrode LFP and CSD Phase-Patterns: A Forward Modeling Study.
Front Neural Circuits. 2016 Jul 15;10:51. doi: 10.3389/fncir.2016.00051. eCollection 2016.
8
An analysis of current source density profiles activated by local stimulation in the mouse auditory cortex in vitro.
Brain Res. 2017 Mar 15;1659:96-112. doi: 10.1016/j.brainres.2017.01.021. Epub 2017 Jan 21.
9
Laminar Distribution of Phase-Amplitude Coupling of Spontaneous Current Sources and Sinks.
Front Neurosci. 2015 Dec 22;9:454. doi: 10.3389/fnins.2015.00454. eCollection 2015.
10
LFP polarity changes across cortical and eccentricity in primary visual cortex.
Front Neurosci. 2023 Feb 27;17:1138602. doi: 10.3389/fnins.2023.1138602. eCollection 2023.

引用本文的文献

1
High-Resolution Laminar Identification in Macaque Primary Visual Cortex Using Neuropixels Probes.
bioRxiv. 2024 Sep 22:2024.01.23.576944. doi: 10.1101/2024.01.23.576944.

本文引用的文献

1
Nonlinear Processing of Shape Information in Rat Lateral Extrastriate Cortex.
J Neurosci. 2019 Feb 27;39(9):1649-1670. doi: 10.1523/JNEUROSCI.1938-18.2018. Epub 2019 Jan 7.
2
Cracking the Function of Layers in the Sensory Cortex.
Neuron. 2018 Dec 5;100(5):1028-1043. doi: 10.1016/j.neuron.2018.10.032.
3
High-Density, Long-Lasting, and Multi-region Electrophysiological Recordings Using Polymer Electrode Arrays.
Neuron. 2019 Jan 2;101(1):21-31.e5. doi: 10.1016/j.neuron.2018.11.002. Epub 2018 Nov 27.
4
Reliable detection of low visual acuity in mice with pattern visually evoked potentials.
Sci Rep. 2018 Oct 29;8(1):15948. doi: 10.1038/s41598-018-34413-8.
5
Phase-specific Surround suppression in Mouse Primary Visual Cortex Correlates with Figure Detection Behavior Based on Phase Discontinuity.
Neuroscience. 2018 May 21;379:359-374. doi: 10.1016/j.neuroscience.2018.03.039. Epub 2018 Mar 30.
7
Challenges and opportunities for large-scale electrophysiology with Neuropixels probes.
Curr Opin Neurobiol. 2018 Jun;50:92-100. doi: 10.1016/j.conb.2018.01.009. Epub 2018 Feb 13.
8
Fully integrated silicon probes for high-density recording of neural activity.
Nature. 2017 Nov 8;551(7679):232-236. doi: 10.1038/nature24636.
10
Locomotion Enhances Neural Encoding of Visual Stimuli in Mouse V1.
J Neurosci. 2017 Apr 5;37(14):3764-3775. doi: 10.1523/JNEUROSCI.2728-16.2017. Epub 2017 Mar 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验