Suppr超能文献

血浆中人类蛋白质丰度的全联合贝叶斯数量性状位点映射。

A fully joint Bayesian quantitative trait locus mapping of human protein abundance in plasma.

机构信息

Chair of Statistics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland.

出版信息

PLoS Comput Biol. 2020 Jun 3;16(6):e1007882. doi: 10.1371/journal.pcbi.1007882. eCollection 2020 Jun.

Abstract

Molecular quantitative trait locus (QTL) analyses are increasingly popular to explore the genetic architecture of complex traits, but existing studies do not leverage shared regulatory patterns and suffer from a large multiplicity burden, which hampers the detection of weak signals such as trans associations. Here, we present a fully multivariate proteomic QTL (pQTL) analysis performed with our recently proposed Bayesian method LOCUS on data from two clinical cohorts, with plasma protein levels quantified by mass-spectrometry and aptamer-based assays. Our two-stage study identifies 136 pQTL associations in the first cohort, of which >80% replicate in the second independent cohort and have significant enrichment with functional genomic elements and disease risk loci. Moreover, 78% of the pQTLs whose protein abundance was quantified by both proteomic techniques are confirmed across assays. Our thorough comparisons with standard univariate QTL mapping on (1) these data and (2) synthetic data emulating the real data show how LOCUS borrows strength across correlated protein levels and markers on a genome-wide scale to effectively increase statistical power. Notably, 15% of the pQTLs uncovered by LOCUS would be missed by the univariate approach, including several trans and pleiotropic hits with successful independent validation. Finally, the analysis of extensive clinical data from the two cohorts indicates that the genetically-driven proteins identified by LOCUS are enriched in associations with low-grade inflammation, insulin resistance and dyslipidemia and might therefore act as endophenotypes for metabolic diseases. While considerations on the clinical role of the pQTLs are beyond the scope of our work, these findings generate useful hypotheses to be explored in future research; all results are accessible online from our searchable database. Thanks to its efficient variational Bayes implementation, LOCUS can analyze jointly thousands of traits and millions of markers. Its applicability goes beyond pQTL studies, opening new perspectives for large-scale genome-wide association and QTL analyses. Diet, Obesity and Genes (DiOGenes) trial registration number: NCT00390637.

摘要

分子数量性状基因座(QTL)分析越来越受欢迎,用于探索复杂性状的遗传结构,但现有研究没有利用共享的调控模式,并且受到大量多重性负担的影响,这阻碍了对弱信号(如跨关联)的检测。在这里,我们使用最近提出的贝叶斯方法 LOCUS 对来自两个临床队列的数据分析进行了全面的多变量蛋白质 QTL(pQTL)分析,其中通过质谱和适体测定法定量了血浆蛋白水平。我们的两阶段研究在第一队列中确定了 136 个 pQTL 关联,其中 >80%在第二个独立队列中得到复制,并与功能基因组元件和疾病风险位点有显著富集。此外,通过两种蛋白质组学技术定量蛋白质丰度的 pQTL 中有 78%在测定中得到确认。我们与(1)这些数据和(2)模拟真实数据的综合数据上的标准单变量 QTL 映射的彻底比较表明,LOCUS 如何在全基因组范围内跨相关蛋白质水平和标记物进行协作,从而有效地提高统计能力。值得注意的是,LOCUS 发现的 15%的 pQTL 会被单变量方法遗漏,包括几个具有成功独立验证的跨关联和多效性命中。最后,对来自两个队列的广泛临床数据的分析表明,LOCUS 鉴定的遗传驱动蛋白在与低度炎症、胰岛素抵抗和血脂异常的关联中丰富,因此可能作为代谢疾病的内表型。虽然我们的工作超出了对 pQTL 临床作用的考虑,但这些发现为未来的研究提供了有用的假设;所有结果都可以从我们的可搜索数据库中在线获得。LOCUS 由于其高效的变分贝叶斯实现,可以联合分析数千个性状和数百万个标记物。其适用性超出了 pQTL 研究范围,为大规模全基因组关联和 QTL 分析开辟了新的视角。肥胖与基因(DiOGenes)试验注册号:NCT00390637。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f942/7295243/fad09c4adae9/pcbi.1007882.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验