Suppr超能文献

用乙基碘化铵钙钛矿纳米晶体突破戈尔德施密特容忍因子的界限

Breaking the Boundaries of the Goldschmidt Tolerance Factor with Ethylammonium Lead Iodide Perovskite Nanocrystals.

作者信息

Guvenc C Meric, Toso Stefano, Ivanov Yurii P, Saleh Gabriele, Balci Sinan, Divitini Giorgio, Manna Liberato

机构信息

Department of Materials Science and Engineering, İzmir Institute of Technology, 35433 Urla, İzmir, Turkey.

Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy.

出版信息

ACS Nano. 2025 Jan 14;19(1):1557-1565. doi: 10.1021/acsnano.4c14536. Epub 2024 Dec 26.

Abstract

We report the synthesis of ethylammonium lead iodide (EAPbI) colloidal nanocrystals as another member of the lead halide perovskites family. The insertion of an unusually large -cation (274 pm in diameter) in the perovskite structure, hitherto considered unlikely due to the unfavorable Goldschmidt tolerance factor, results in a significantly larger lattice parameter compared to the Cs-, methylammonium- and formamidinium-based lead halide perovskite homologues. As a consequence, EAPbI nanocrystals are highly unstable, evolving to a nonperovskite δ-EAPbI polymorph within 1 day. Also, EAPbI nanocrystals are very sensitive to electron irradiation and quickly degrade to PbI upon exposure to the electron beam, following a mechanism similar to that of other hybrid lead iodide perovskites (although degradation can be reduced by partially replacing the EA ions with Cs ions). Interestingly, in some cases during this degradation the formation of an epitaxial interface between (EACs)PbI and PbI is observed. The photoluminescence emission of the EAPbI perovskite nanocrystals, albeit being characterized by a low quantum yield (∼1%), can be tuned in the 664-690 nm range by regulating their size during the synthesis. The emission efficiency can be improved upon partial alloying at the A site with Cs or formamidinium cations. Furthermore, the morphology of the EAPbI nanocrystals can be chosen to be either nanocube or nanoplatelet, depending on the synthesis conditions.

摘要

我们报道了碘化乙铵铅(EAPbI)胶体纳米晶体的合成,它是卤化铅钙钛矿家族的另一个成员。在钙钛矿结构中插入一个异常大的阳离子(直径274 pm),由于不利的戈尔德施密特容忍因子,迄今为止被认为不太可能,这导致与基于铯、甲铵和甲脒的卤化铅钙钛矿同系物相比,晶格参数显著更大。因此,EAPbI纳米晶体非常不稳定,在1天内就会演变成非钙钛矿的δ-EAPbI多晶型物。此外,EAPbI纳米晶体对电子辐照非常敏感,在电子束照射下会迅速降解为PbI,其降解机制与其他混合碘化铅钙钛矿类似(尽管用铯离子部分取代EA离子可以减少降解)。有趣的是,在这种降解过程中的某些情况下,会观察到(EACs)PbI和PbI之间形成外延界面。EAPbI钙钛矿纳米晶体的光致发光发射,尽管量子产率较低(约1%),但在合成过程中通过调节其尺寸可以在664 - 690 nm范围内进行调谐。在A位点与铯或甲脒阳离子进行部分合金化时,发射效率可以提高。此外,根据合成条件,EAPbI纳米晶体的形态可以选择为纳米立方体或纳米片。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5431/11752489/775af5b41e86/nn4c14536_0001.jpg

相似文献

1
Breaking the Boundaries of the Goldschmidt Tolerance Factor with Ethylammonium Lead Iodide Perovskite Nanocrystals.
ACS Nano. 2025 Jan 14;19(1):1557-1565. doi: 10.1021/acsnano.4c14536. Epub 2024 Dec 26.
3
Metamorphoses of Cesium Lead Halide Nanocrystals.
Acc Chem Res. 2021 Feb 2;54(3):498-508. doi: 10.1021/acs.accounts.0c00710. Epub 2021 Jan 7.
4
Ethylammonium as an alternative cation for efficient perovskite solar cells from first-principles calculations.
RSC Adv. 2019 Mar 6;9(13):7356-7361. doi: 10.1039/c9ra00853e. eCollection 2019 Mar 1.
5
Structure-Dependent Photoluminescence in Low-Dimensional Ethylammonium, Propylammonium, and Butylammonium Lead Iodide Perovskites.
ACS Appl Mater Interfaces. 2020 Jan 29;12(4):5008-5016. doi: 10.1021/acsami.9b17881. Epub 2020 Jan 13.
6
Size of the Organic Cation Tunes the Band Gap of Colloidal Organolead Bromide Perovskite Nanocrystals.
J Phys Chem Lett. 2016 Aug 18;7(16):3270-7. doi: 10.1021/acs.jpclett.6b01406. Epub 2016 Aug 9.
7
Cation Engineering in Two-Dimensional Ruddlesden-Popper Lead Iodide Perovskites with Mixed Large A-Site Cations in the Cages.
J Am Chem Soc. 2020 Feb 26;142(8):4008-4021. doi: 10.1021/jacs.9b13587. Epub 2020 Feb 17.
9
Layered Hybrid Formamidinium Lead Iodide Perovskites: Challenges and Opportunities.
Acc Chem Res. 2021 Jun 15;54(12):2729-2740. doi: 10.1021/acs.accounts.0c00879. Epub 2021 Jun 4.
10
Facile Dimension Transformation Strategy for Fabrication of Efficient and Stable CsPbI Perovskite Solar Cells.
ACS Appl Mater Interfaces. 2023 Apr 12;15(14):17825-17833. doi: 10.1021/acsami.2c23289. Epub 2023 Mar 29.

本文引用的文献

1
A-Site Cation Influence on the Structural and Optical Evolution of Ultrathin Lead Halide Perovskite Nanoplatelets.
ACS Nano. 2024 Mar 19;18(11):8248-8258. doi: 10.1021/acsnano.3c12286. Epub 2024 Mar 1.
2
Colloidal Aziridinium Lead Bromide Quantum Dots.
ACS Nano. 2024 Feb 6;18(7):5684-97. doi: 10.1021/acsnano.3c11579.
3
Chemical Storage of Ammonia through Dynamic Structural Transformation of a Hybrid Perovskite Compound.
J Am Chem Soc. 2023 Aug 9;145(31):16973-16977. doi: 10.1021/jacs.3c04181. Epub 2023 Jul 10.
4
Collective Diffraction Effects in Perovskite Nanocrystal Superlattices.
Acc Chem Res. 2023 Jan 3;56(1):66-76. doi: 10.1021/acs.accounts.2c00613. Epub 2022 Dec 19.
5
Controlling the nucleation and growth kinetics of lead halide perovskite quantum dots.
Science. 2022 Sep 23;377(6613):1406-1412. doi: 10.1126/science.abq3616. Epub 2022 Sep 8.
6
Aziridinium cation templating 3D lead halide hybrid perovskites.
Chem Commun (Camb). 2022 May 10;58(38):5745-5748. doi: 10.1039/d2cc01364a.
7
Structure and Surface Passivation of Ultrathin Cesium Lead Halide Nanoplatelets Revealed by Multilayer Diffraction.
ACS Nano. 2021 Dec 28;15(12):20341-20352. doi: 10.1021/acsnano.1c08636. Epub 2021 Nov 29.
9
State of the Art and Prospects for Halide Perovskite Nanocrystals.
ACS Nano. 2021 Jul 27;15(7):10775-10981. doi: 10.1021/acsnano.0c08903. Epub 2021 Jun 17.
10
Atomic-scale microstructure of metal halide perovskite.
Science. 2020 Oct 30;370(6516). doi: 10.1126/science.abb5940.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验