Suppr超能文献

基于 OCT 的力估计的 4D 时空数据表示的深度学习。

Deep learning with 4D spatio-temporal data representations for OCT-based force estimation.

机构信息

Hamburg University of Technology, Institute of Medical Technology, Am Schwarzenberg-Campus 3, Hamburg 21073 Germany.

Hamburg University of Technology, Institute of Medical Technology, Am Schwarzenberg-Campus 3, Hamburg 21073 Germany.

出版信息

Med Image Anal. 2020 Aug;64:101730. doi: 10.1016/j.media.2020.101730. Epub 2020 May 23.

Abstract

Estimating the forces acting between instruments and tissue is a challenging problem for robot-assisted minimally-invasive surgery. Recently, numerous vision-based methods have been proposed to replace electro-mechanical approaches. Moreover, optical coherence tomography (OCT) and deep learning have been used for estimating forces based on deformation observed in volumetric image data. The method demonstrated the advantage of deep learning with 3D volumetric data over 2D depth images for force estimation. In this work, we extend the problem of deep learning-based force estimation to 4D spatio-temporal data with streams of 3D OCT volumes. For this purpose, we design and evaluate several methods extending spatio-temporal deep learning to 4D which is largely unexplored so far. Furthermore, we provide an in-depth analysis of multi-dimensional image data representations for force estimation, comparing our 4D approach to previous, lower-dimensional methods. Also, we analyze the effect of temporal information and we study the prediction of short-term future force values, which could facilitate safety features. For our 4D force estimation architectures, we find that efficient decoupling of spatial and temporal processing is advantageous. We show that using 4D spatio-temporal data outperforms all previously used data representations with a mean absolute error of 10.7 mN. We find that temporal information is valuable for force estimation and we demonstrate the feasibility of force prediction.

摘要

评估器械和组织之间的相互作用力是机器人辅助微创手术中的一个难题。最近,已经提出了许多基于视觉的方法来代替机电方法。此外,光学相干断层扫描(OCT)和深度学习已被用于基于体积图像数据中观察到的变形来估计力。该方法展示了深度学习与 2D 深度图像相比在 3D 体积数据上用于力估计的优势。在这项工作中,我们将基于深度学习的力估计问题扩展到具有 3D OCT 流的 4D 时空数据。为此,我们设计并评估了几种将时空深度学习扩展到目前尚未广泛探索的 4D 的方法。此外,我们对力估计的多维图像数据表示进行了深入分析,将我们的 4D 方法与之前的低维方法进行了比较。我们还分析了时间信息的影响,并研究了短期未来力值的预测,这有助于实现安全功能。对于我们的 4D 力估计架构,我们发现有效地分离空间和时间处理是有利的。我们表明,使用 4D 时空数据的表现优于所有以前使用的数据表示,平均绝对误差为 10.7 mN。我们发现时间信息对力估计很有价值,并证明了力预测的可行性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验