Institute of Medical Technology, Hamburg University of Technology, Hamburg, Germany.
Department of Urology, University Hospital Schleswig-Holstein, Kiel, Germany.
Int J Comput Assist Radiol Surg. 2019 Sep;14(9):1485-1493. doi: 10.1007/s11548-019-02006-z. Epub 2019 May 30.
Precise placement of needles is a challenge in a number of clinical applications such as brachytherapy or biopsy. Forces acting at the needle cause tissue deformation and needle deflection which in turn may lead to misplacement or injury. Hence, a number of approaches to estimate the forces at the needle have been proposed. Yet, integrating sensors into the needle tip is challenging and a careful calibration is required to obtain good force estimates.
We describe a fiber-optic needle tip force sensor design using a single OCT fiber for measurement. The fiber images the deformation of an epoxy layer placed below the needle tip which results in a stream of 1D depth profiles. We study different deep learning approaches to facilitate calibration between this spatio-temporal image data and the related forces. In particular, we propose a novel convGRU-CNN architecture for simultaneous spatial and temporal data processing.
The needle can be adapted to different operating ranges by changing the stiffness of the epoxy layer. Likewise, calibration can be adapted by training the deep learning models. Our novel convGRU-CNN architecture results in the lowest mean absolute error of [Formula: see text] and a cross-correlation coefficient of 0.9997 and clearly outperforms the other methods. Ex vivo experiments in human prostate tissue demonstrate the needle's application.
Our OCT-based fiber-optic sensor presents a viable alternative for needle tip force estimation. The results indicate that the rich spatio-temporal information included in the stream of images showing the deformation throughout the epoxy layer can be effectively used by deep learning models. Particularly, we demonstrate that the convGRU-CNN architecture performs favorably, making it a promising approach for other spatio-temporal learning problems.
在许多临床应用中,如近距离放射治疗或活检,精确放置针具是一个挑战。作用于针具的力会导致组织变形和针具偏转,从而可能导致错位或损伤。因此,已经提出了许多估计针具上力的方法。然而,将传感器集成到针尖端具有挑战性,并且需要仔细校准才能获得良好的力估计。
我们描述了一种使用单个 OCT 光纤进行测量的光纤针尖力传感器设计。光纤对针尖下方放置的环氧树脂层的变形进行成像,从而产生一系列一维深度剖面。我们研究了不同的深度学习方法,以促进这种时空图像数据与相关力之间的校准。特别是,我们提出了一种新颖的 convGRU-CNN 架构,用于同时进行空间和时间数据处理。
可以通过改变环氧树脂层的刚度来适应不同的操作范围。同样,可以通过训练深度学习模型来适应校准。我们新提出的 convGRU-CNN 架构的平均绝对误差最低为[公式:见文本],交叉相关系数为 0.9997,明显优于其他方法。在人类前列腺组织的离体实验中演示了该针的应用。
我们基于 OCT 的光纤传感器为针尖力估计提供了一种可行的替代方案。结果表明,包含在显示整个环氧树脂层变形的图像流中的丰富时空信息可以被深度学习模型有效地利用。特别是,我们证明了 convGRU-CNN 架构表现良好,使其成为其他时空学习问题的有前途的方法。