Suppr超能文献

CRISPR-dCas9 驱动的阻抗生物传感器用于无标记检测循环肿瘤 DNA。

CRISPR-dCas9 powered impedimetric biosensor for label-free detection of circulating tumor DNAs.

机构信息

Ege University, Faculty of Medicine, Department of Medical Biochemistry, Bornova, 35100, İzmir, Turkey.

Ege University, Faculty of Medicine, Department of General Surgery, Bornova, 35100, İzmir, Turkey.

出版信息

Anal Chim Acta. 2020 Jul 18;1121:35-41. doi: 10.1016/j.aca.2020.04.009. Epub 2020 Apr 16.

Abstract

Label-free biosensors which can be integrated into lab-on-a-chip platforms have the advantage of using small volumes for rapid and inexpensive measurements contrary to label-based technologies which are often more costly and time-consuming. In this study, graphene oxide screen printed electrodes (GPHOXE) were modified by deactivated Cas9 (dCas9) proteins and synthetic guide RNA (sgRNA) as the biorecognition receptor for label-free detection of circulating tumor DNAs (ctDNA). This was achieved by detection of a tumor related mutation (PIK3CA exon 9 mutation) via sequence-specific recognition followed by electrochemical impedance spectroscopy (EIS) analysis. The biosensor showed high specificity as there was no impedance signal for other ctDNA sequences, even the single nucleotide mismatch. dCas9-sgRNA modified biosensor demonstrated linear detection limits between 2 and 20 nM for 120 bp ctDNA's in 40 s. The calibration curve showed good linearity, LOD was calculated as 0.65 nM and LOQ was calculated as 1.92 nM. Selectivity and repeatability studies were carried out in real blood samples and the recovery was higher than 96%. In conclusion, dCas9-sgRNA was effectively immobilized and optimized on GPHOXE as the selective biorecognition receptor of this ultrafast impedimetric biosensor. The CRISPR-dCas9 powered impedimetric system showed good selectivity, high repeatability and good recovery properties. This is the first literature to report the use of CRISPR/Cas technology as a label-free tool that can be used in an impedimetric system for detection of ctDNA's.

摘要

无标记生物传感器可以与微流控芯片平台集成,具有使用小体积进行快速、廉价测量的优势,与基于标记的技术相比,后者通常更昂贵且耗时。在这项研究中,通过将失活的 Cas9(dCas9)蛋白和合成向导 RNA(sgRNA)修饰氧化石墨烯丝网印刷电极(GPHOXE),作为用于无标记检测循环肿瘤 DNA(ctDNA)的生物识别受体。这是通过序列特异性识别 followed by electrochemical impedance spectroscopy(EIS)analysis 来实现的,随后检测肿瘤相关突变(PIK3CA 外显子 9 突变)。生物传感器具有高特异性,因为其他 ctDNA 序列甚至单个核苷酸错配都没有阻抗信号。dCas9-sgRNA 修饰的生物传感器在 40 秒内对 120 bp 的 ctDNA 显示出 2 至 20 nM 的线性检测限。校准曲线显示出良好的线性度,LOD 计算为 0.65 nM,LOQ 计算为 1.92 nM。在真实血液样本中进行了选择性和重复性研究,回收率高于 96%。总之,dCas9-sgRNA 被有效地固定化并优化在 GPHOXE 上,作为这种超快速阻抗生物传感器的选择性生物识别受体。CRISPR-dCas9 供电的阻抗系统表现出良好的选择性、高重复性和良好的恢复性能。这是首次报道将 CRISPR/Cas 技术用作无标记工具的文献,可用于检测 ctDNA 的阻抗系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验