Suppr超能文献

针对缩窄的基于无创计算力学和成像的个性化心脏病学诊断框架。

Towards non-invasive computational-mechanics and imaging-based diagnostic framework for personalized cardiology for coarctation.

机构信息

Department of Mechanical Engineering, McMaster University, Hamilton, ON, Canada.

Division of Cardiology, Department of Medicine, McMaster University, Hamilton, ON, Canada.

出版信息

Sci Rep. 2020 Jun 3;10(1):9048. doi: 10.1038/s41598-020-65576-y.

Abstract

Coarctation of the aorta (COA) is a congenital narrowing of the proximal descending aorta. Although accurate and early diagnosis of COA hinges on blood flow quantification, proper diagnostic methods for COA are still lacking because fluid-dynamics methods that can be used for accurate flow quantification are not well developed yet. Most importantly, COA and the heart interact with each other and because the heart resides in a complex vascular network that imposes boundary conditions on its function, accurate diagnosis relies on quantifications of the global hemodynamics (heart-function metrics) as well as the local hemodynamics (detailed information of the blood flow dynamics in COA). In this study, to enable the development of new non-invasive methods that can quantify local and global hemodynamics for COA diagnosis, we developed an innovative fast computational-mechanics and imaging-based framework that uses Lattice Boltzmann method and lumped-parameter modeling that only need routine non-invasive clinical patient data. We used clinical data of patients with COA to validate the proposed framework and to demonstrate its abilities to provide new diagnostic analyses not possible with conventional diagnostic methods. We validated this framework against clinical cardiac catheterization data, calculations using the conventional finite-volume method and clinical Doppler echocardiographic measurements. The diagnostic information, that the framework can provide, is vitally needed to improve clinical outcomes, to assess patient risk and to plan treatment.

摘要

主动脉缩窄(COA)是升主动脉近段的先天性狭窄。尽管 COA 的准确和早期诊断取决于血流量化,但由于尚未开发出可用于准确流量量化的流体动力学方法,因此 COA 的适当诊断方法仍然缺乏。最重要的是,COA 和心脏相互作用,由于心脏位于一个复杂的血管网络中,该网络对其功能施加了边界条件,因此准确的诊断依赖于对全局血液动力学(心脏功能指标)以及局部血液动力学(COA 中血液动力学的详细信息)的量化。在这项研究中,为了开发可用于 COA 诊断的新型非侵入性局部和全局血液动力学量化方法,我们开发了一种创新的快速计算力学和基于成像的框架,该框架使用晶格玻尔兹曼方法和集中参数建模,仅需要常规的非侵入性临床患者数据。我们使用 COA 患者的临床数据来验证所提出的框架,并证明其提供常规诊断方法不可能提供的新诊断分析的能力。我们将该框架与临床心导管插入术数据、使用传统有限体积方法的计算以及临床多普勒超声心动图测量进行了比较。该框架提供的诊断信息对于改善临床结果、评估患者风险和计划治疗至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验